Using Vieta's formula to evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$












4












$begingroup$


Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,



$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$



How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?



Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$



and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint to get started (I haven't tried). Put the three fractions over a common denominator.
    $endgroup$
    – Ethan Bolker
    Dec 10 '18 at 19:04






  • 4




    $begingroup$
    There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
    $endgroup$
    – user614671
    Dec 10 '18 at 19:16










  • $begingroup$
    Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
    $endgroup$
    – Dr. Mathva
    Dec 10 '18 at 19:34
















4












$begingroup$


Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,



$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$



How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?



Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$



and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint to get started (I haven't tried). Put the three fractions over a common denominator.
    $endgroup$
    – Ethan Bolker
    Dec 10 '18 at 19:04






  • 4




    $begingroup$
    There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
    $endgroup$
    – user614671
    Dec 10 '18 at 19:16










  • $begingroup$
    Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
    $endgroup$
    – Dr. Mathva
    Dec 10 '18 at 19:34














4












4








4


1



$begingroup$


Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,



$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$



How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?



Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$



and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.










share|cite|improve this question











$endgroup$




Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,



$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$



How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?



Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$



and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.







analysis cubic-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 19:31









Martin R

30.5k33558




30.5k33558










asked Dec 10 '18 at 18:59









Stefan IvanovskiStefan Ivanovski

546




546












  • $begingroup$
    Hint to get started (I haven't tried). Put the three fractions over a common denominator.
    $endgroup$
    – Ethan Bolker
    Dec 10 '18 at 19:04






  • 4




    $begingroup$
    There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
    $endgroup$
    – user614671
    Dec 10 '18 at 19:16










  • $begingroup$
    Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
    $endgroup$
    – Dr. Mathva
    Dec 10 '18 at 19:34


















  • $begingroup$
    Hint to get started (I haven't tried). Put the three fractions over a common denominator.
    $endgroup$
    – Ethan Bolker
    Dec 10 '18 at 19:04






  • 4




    $begingroup$
    There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
    $endgroup$
    – user614671
    Dec 10 '18 at 19:16










  • $begingroup$
    Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
    $endgroup$
    – Dr. Mathva
    Dec 10 '18 at 19:34
















$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04




$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04




4




4




$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16




$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16












$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34




$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34










2 Answers
2






active

oldest

votes


















6












$begingroup$

Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$



For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
    The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
    So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034339%2fusing-vietas-formula-to-evaluate-fracx-1x-2-fracx-2x-3-fracx-3%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
      $$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
      $$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
      That is,
      $$p+q=frac{BC-3D}{D}$$
      and
      $$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
      Therefore, $p$ and $q$ are the roots of
      $$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
      which is the same as
      $$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$



      For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
      Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$






      share|cite|improve this answer











      $endgroup$


















        6












        $begingroup$

        Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
        $$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
        $$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
        That is,
        $$p+q=frac{BC-3D}{D}$$
        and
        $$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
        Therefore, $p$ and $q$ are the roots of
        $$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
        which is the same as
        $$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$



        For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
        Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$






        share|cite|improve this answer











        $endgroup$
















          6












          6








          6





          $begingroup$

          Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
          $$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
          $$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
          That is,
          $$p+q=frac{BC-3D}{D}$$
          and
          $$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
          Therefore, $p$ and $q$ are the roots of
          $$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
          which is the same as
          $$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$



          For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
          Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$






          share|cite|improve this answer











          $endgroup$



          Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
          $$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
          $$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
          That is,
          $$p+q=frac{BC-3D}{D}$$
          and
          $$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
          Therefore, $p$ and $q$ are the roots of
          $$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
          which is the same as
          $$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$



          For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
          Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 10 '18 at 19:33

























          answered Dec 10 '18 at 19:29







          user614671






























              2












              $begingroup$

              You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
              The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
              So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
                The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
                So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
                  The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
                  So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.






                  share|cite|improve this answer









                  $endgroup$



                  You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
                  The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
                  So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 10 '18 at 19:14









                  Egor VeprevEgor Veprev

                  212




                  212






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034339%2fusing-vietas-formula-to-evaluate-fracx-1x-2-fracx-2x-3-fracx-3%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?