Prove that $sum_{n=1}^{infty} big(frac{1}{4}big)^n {2n choose n}$ diverges [duplicate]












6












$begingroup$



This question already has an answer here:




  • Show that $sum_{n=1}^{infty} frac{(2n)!}{4^n(n!)^2}$ is divergent

    5 answers




I need to prove that the following series $$ sum_{n=1}^{infty} bigg(frac{1}{4}bigg)^n {2n choose n}$$ diverges.



I've managed to change it to the following formula: $$ 4^n=(1+1)^{2n}=bigg(sum_{k=0}^n{nchoose k}bigg)^2 text{ and } {2nchoose n}=sum_{k=0}^n{nchoose k}^2 text{ so }$$ $$sum_{n=1}^infty bigg(frac{1}{4}bigg)^n {2n choose n} =sum_{n=1}^infty frac{sum_{k=0}^n{nchoose k}^2}{left(sum_{k=0}^n{nchoose k}right)^2} $$ Where do I go from here? I know that the limit of series' sequence goes to $0$ but that isn't helpful really since I need to prove that it diverges.



Also all the ratio tests and root test are inconclusive. I already checked that. Think of 4 as variable $a$. I need to check for which $a$ this series converges. I already know that for $a>4$ it does, but I need to prove that for $a=4$ it diverges. There was a mistake in my calculating of limit in Raabe's test which concluded that this series is indeed divergent.










share|cite|improve this question











$endgroup$



marked as duplicate by Nosrati, Xander Henderson, Lord Shark the Unknown, user10354138, Cesareo Dec 9 '18 at 9:30


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Try bounding your last term by the RMS inequality.
    $endgroup$
    – siddharth64
    Dec 8 '18 at 11:31






  • 1




    $begingroup$
    Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
    $endgroup$
    – Did
    Dec 8 '18 at 11:42








  • 1




    $begingroup$
    See here: math.stackexchange.com/q/2857889/515527
    $endgroup$
    – Zacky
    Dec 8 '18 at 12:17
















6












$begingroup$



This question already has an answer here:




  • Show that $sum_{n=1}^{infty} frac{(2n)!}{4^n(n!)^2}$ is divergent

    5 answers




I need to prove that the following series $$ sum_{n=1}^{infty} bigg(frac{1}{4}bigg)^n {2n choose n}$$ diverges.



I've managed to change it to the following formula: $$ 4^n=(1+1)^{2n}=bigg(sum_{k=0}^n{nchoose k}bigg)^2 text{ and } {2nchoose n}=sum_{k=0}^n{nchoose k}^2 text{ so }$$ $$sum_{n=1}^infty bigg(frac{1}{4}bigg)^n {2n choose n} =sum_{n=1}^infty frac{sum_{k=0}^n{nchoose k}^2}{left(sum_{k=0}^n{nchoose k}right)^2} $$ Where do I go from here? I know that the limit of series' sequence goes to $0$ but that isn't helpful really since I need to prove that it diverges.



Also all the ratio tests and root test are inconclusive. I already checked that. Think of 4 as variable $a$. I need to check for which $a$ this series converges. I already know that for $a>4$ it does, but I need to prove that for $a=4$ it diverges. There was a mistake in my calculating of limit in Raabe's test which concluded that this series is indeed divergent.










share|cite|improve this question











$endgroup$



marked as duplicate by Nosrati, Xander Henderson, Lord Shark the Unknown, user10354138, Cesareo Dec 9 '18 at 9:30


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Try bounding your last term by the RMS inequality.
    $endgroup$
    – siddharth64
    Dec 8 '18 at 11:31






  • 1




    $begingroup$
    Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
    $endgroup$
    – Did
    Dec 8 '18 at 11:42








  • 1




    $begingroup$
    See here: math.stackexchange.com/q/2857889/515527
    $endgroup$
    – Zacky
    Dec 8 '18 at 12:17














6












6








6


2



$begingroup$



This question already has an answer here:




  • Show that $sum_{n=1}^{infty} frac{(2n)!}{4^n(n!)^2}$ is divergent

    5 answers




I need to prove that the following series $$ sum_{n=1}^{infty} bigg(frac{1}{4}bigg)^n {2n choose n}$$ diverges.



I've managed to change it to the following formula: $$ 4^n=(1+1)^{2n}=bigg(sum_{k=0}^n{nchoose k}bigg)^2 text{ and } {2nchoose n}=sum_{k=0}^n{nchoose k}^2 text{ so }$$ $$sum_{n=1}^infty bigg(frac{1}{4}bigg)^n {2n choose n} =sum_{n=1}^infty frac{sum_{k=0}^n{nchoose k}^2}{left(sum_{k=0}^n{nchoose k}right)^2} $$ Where do I go from here? I know that the limit of series' sequence goes to $0$ but that isn't helpful really since I need to prove that it diverges.



Also all the ratio tests and root test are inconclusive. I already checked that. Think of 4 as variable $a$. I need to check for which $a$ this series converges. I already know that for $a>4$ it does, but I need to prove that for $a=4$ it diverges. There was a mistake in my calculating of limit in Raabe's test which concluded that this series is indeed divergent.










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Show that $sum_{n=1}^{infty} frac{(2n)!}{4^n(n!)^2}$ is divergent

    5 answers




I need to prove that the following series $$ sum_{n=1}^{infty} bigg(frac{1}{4}bigg)^n {2n choose n}$$ diverges.



I've managed to change it to the following formula: $$ 4^n=(1+1)^{2n}=bigg(sum_{k=0}^n{nchoose k}bigg)^2 text{ and } {2nchoose n}=sum_{k=0}^n{nchoose k}^2 text{ so }$$ $$sum_{n=1}^infty bigg(frac{1}{4}bigg)^n {2n choose n} =sum_{n=1}^infty frac{sum_{k=0}^n{nchoose k}^2}{left(sum_{k=0}^n{nchoose k}right)^2} $$ Where do I go from here? I know that the limit of series' sequence goes to $0$ but that isn't helpful really since I need to prove that it diverges.



Also all the ratio tests and root test are inconclusive. I already checked that. Think of 4 as variable $a$. I need to check for which $a$ this series converges. I already know that for $a>4$ it does, but I need to prove that for $a=4$ it diverges. There was a mistake in my calculating of limit in Raabe's test which concluded that this series is indeed divergent.





This question already has an answer here:




  • Show that $sum_{n=1}^{infty} frac{(2n)!}{4^n(n!)^2}$ is divergent

    5 answers








real-analysis sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 13:22









Namaste

1




1










asked Dec 8 '18 at 11:26









VictorVictor

786




786




marked as duplicate by Nosrati, Xander Henderson, Lord Shark the Unknown, user10354138, Cesareo Dec 9 '18 at 9:30


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Nosrati, Xander Henderson, Lord Shark the Unknown, user10354138, Cesareo Dec 9 '18 at 9:30


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    Try bounding your last term by the RMS inequality.
    $endgroup$
    – siddharth64
    Dec 8 '18 at 11:31






  • 1




    $begingroup$
    Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
    $endgroup$
    – Did
    Dec 8 '18 at 11:42








  • 1




    $begingroup$
    See here: math.stackexchange.com/q/2857889/515527
    $endgroup$
    – Zacky
    Dec 8 '18 at 12:17


















  • $begingroup$
    Try bounding your last term by the RMS inequality.
    $endgroup$
    – siddharth64
    Dec 8 '18 at 11:31






  • 1




    $begingroup$
    Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
    $endgroup$
    – Did
    Dec 8 '18 at 11:42








  • 1




    $begingroup$
    See here: math.stackexchange.com/q/2857889/515527
    $endgroup$
    – Zacky
    Dec 8 '18 at 12:17
















$begingroup$
Try bounding your last term by the RMS inequality.
$endgroup$
– siddharth64
Dec 8 '18 at 11:31




$begingroup$
Try bounding your last term by the RMS inequality.
$endgroup$
– siddharth64
Dec 8 '18 at 11:31




1




1




$begingroup$
Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
$endgroup$
– Did
Dec 8 '18 at 11:42






$begingroup$
Use either Stirling formula (for a one-liner) or a refinement of the ratio test called the Raabe's test.
$endgroup$
– Did
Dec 8 '18 at 11:42






1




1




$begingroup$
See here: math.stackexchange.com/q/2857889/515527
$endgroup$
– Zacky
Dec 8 '18 at 12:17




$begingroup$
See here: math.stackexchange.com/q/2857889/515527
$endgroup$
– Zacky
Dec 8 '18 at 12:17










2 Answers
2






active

oldest

votes


















3












$begingroup$

Let's calculate $lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)$,where $a_n= bigg(frac{1}{4}bigg)^n {2n choose n}$ and
$a_{n+1}=bigg(frac{1}{4}bigg)^{n+1} {2n+2 choose n+1}$.



begin{align}
lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)&=lim_{nto infty}nleft(4frac{(n+1)^2}{(2n+1)(2n+2)}-1right)\
&=lim_{nto infty}frac{n}{2n+1}\
&=frac{1}{2}
end{align}

Since $frac{1}{2} lt 1$,by Raabe's test, we can conclude that the series diverges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I've double checked my calculations. I think Raabe's test works fine here.
    $endgroup$
    – Thomas Shelby
    Dec 8 '18 at 12:26






  • 1




    $begingroup$
    Sure it does, and your computation is fine. (+1)
    $endgroup$
    – Did
    Dec 8 '18 at 12:30






  • 1




    $begingroup$
    Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
    $endgroup$
    – Victor
    Dec 8 '18 at 12:55



















0












$begingroup$

HINT



We have that



$$bigg(frac{1}{4}bigg)^n {2n choose n}sim frac{1}{sqrt{pi n}}$$



then refer to limit comparison test.



Refer to the related




  • Elementary central binomial coefficient estimates






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The root test is also inconclusive.
    $endgroup$
    – Kemono Chen
    Dec 8 '18 at 11:49










  • $begingroup$
    @KemonoChen Ops yes of course! I see it now...Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 11:54










  • $begingroup$
    Something wrong?
    $endgroup$
    – gimusi
    Dec 8 '18 at 13:09


















2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Let's calculate $lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)$,where $a_n= bigg(frac{1}{4}bigg)^n {2n choose n}$ and
$a_{n+1}=bigg(frac{1}{4}bigg)^{n+1} {2n+2 choose n+1}$.



begin{align}
lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)&=lim_{nto infty}nleft(4frac{(n+1)^2}{(2n+1)(2n+2)}-1right)\
&=lim_{nto infty}frac{n}{2n+1}\
&=frac{1}{2}
end{align}

Since $frac{1}{2} lt 1$,by Raabe's test, we can conclude that the series diverges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I've double checked my calculations. I think Raabe's test works fine here.
    $endgroup$
    – Thomas Shelby
    Dec 8 '18 at 12:26






  • 1




    $begingroup$
    Sure it does, and your computation is fine. (+1)
    $endgroup$
    – Did
    Dec 8 '18 at 12:30






  • 1




    $begingroup$
    Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
    $endgroup$
    – Victor
    Dec 8 '18 at 12:55
















3












$begingroup$

Let's calculate $lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)$,where $a_n= bigg(frac{1}{4}bigg)^n {2n choose n}$ and
$a_{n+1}=bigg(frac{1}{4}bigg)^{n+1} {2n+2 choose n+1}$.



begin{align}
lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)&=lim_{nto infty}nleft(4frac{(n+1)^2}{(2n+1)(2n+2)}-1right)\
&=lim_{nto infty}frac{n}{2n+1}\
&=frac{1}{2}
end{align}

Since $frac{1}{2} lt 1$,by Raabe's test, we can conclude that the series diverges.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I've double checked my calculations. I think Raabe's test works fine here.
    $endgroup$
    – Thomas Shelby
    Dec 8 '18 at 12:26






  • 1




    $begingroup$
    Sure it does, and your computation is fine. (+1)
    $endgroup$
    – Did
    Dec 8 '18 at 12:30






  • 1




    $begingroup$
    Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
    $endgroup$
    – Victor
    Dec 8 '18 at 12:55














3












3








3





$begingroup$

Let's calculate $lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)$,where $a_n= bigg(frac{1}{4}bigg)^n {2n choose n}$ and
$a_{n+1}=bigg(frac{1}{4}bigg)^{n+1} {2n+2 choose n+1}$.



begin{align}
lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)&=lim_{nto infty}nleft(4frac{(n+1)^2}{(2n+1)(2n+2)}-1right)\
&=lim_{nto infty}frac{n}{2n+1}\
&=frac{1}{2}
end{align}

Since $frac{1}{2} lt 1$,by Raabe's test, we can conclude that the series diverges.






share|cite|improve this answer











$endgroup$



Let's calculate $lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)$,where $a_n= bigg(frac{1}{4}bigg)^n {2n choose n}$ and
$a_{n+1}=bigg(frac{1}{4}bigg)^{n+1} {2n+2 choose n+1}$.



begin{align}
lim_{nto infty}nleft(frac{a_n}{a_{n+1}}-1right)&=lim_{nto infty}nleft(4frac{(n+1)^2}{(2n+1)(2n+2)}-1right)\
&=lim_{nto infty}frac{n}{2n+1}\
&=frac{1}{2}
end{align}

Since $frac{1}{2} lt 1$,by Raabe's test, we can conclude that the series diverges.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 8 '18 at 12:31

























answered Dec 8 '18 at 12:24









Thomas ShelbyThomas Shelby

4,0542625




4,0542625












  • $begingroup$
    I've double checked my calculations. I think Raabe's test works fine here.
    $endgroup$
    – Thomas Shelby
    Dec 8 '18 at 12:26






  • 1




    $begingroup$
    Sure it does, and your computation is fine. (+1)
    $endgroup$
    – Did
    Dec 8 '18 at 12:30






  • 1




    $begingroup$
    Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
    $endgroup$
    – Victor
    Dec 8 '18 at 12:55


















  • $begingroup$
    I've double checked my calculations. I think Raabe's test works fine here.
    $endgroup$
    – Thomas Shelby
    Dec 8 '18 at 12:26






  • 1




    $begingroup$
    Sure it does, and your computation is fine. (+1)
    $endgroup$
    – Did
    Dec 8 '18 at 12:30






  • 1




    $begingroup$
    Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
    $endgroup$
    – Victor
    Dec 8 '18 at 12:55
















$begingroup$
I've double checked my calculations. I think Raabe's test works fine here.
$endgroup$
– Thomas Shelby
Dec 8 '18 at 12:26




$begingroup$
I've double checked my calculations. I think Raabe's test works fine here.
$endgroup$
– Thomas Shelby
Dec 8 '18 at 12:26




1




1




$begingroup$
Sure it does, and your computation is fine. (+1)
$endgroup$
– Did
Dec 8 '18 at 12:30




$begingroup$
Sure it does, and your computation is fine. (+1)
$endgroup$
– Did
Dec 8 '18 at 12:30




1




1




$begingroup$
Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
$endgroup$
– Victor
Dec 8 '18 at 12:55




$begingroup$
Calculated this limit once again and you were indeed right, there was a mistake and this limit is $frac{1}{2}$
$endgroup$
– Victor
Dec 8 '18 at 12:55











0












$begingroup$

HINT



We have that



$$bigg(frac{1}{4}bigg)^n {2n choose n}sim frac{1}{sqrt{pi n}}$$



then refer to limit comparison test.



Refer to the related




  • Elementary central binomial coefficient estimates






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The root test is also inconclusive.
    $endgroup$
    – Kemono Chen
    Dec 8 '18 at 11:49










  • $begingroup$
    @KemonoChen Ops yes of course! I see it now...Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 11:54










  • $begingroup$
    Something wrong?
    $endgroup$
    – gimusi
    Dec 8 '18 at 13:09
















0












$begingroup$

HINT



We have that



$$bigg(frac{1}{4}bigg)^n {2n choose n}sim frac{1}{sqrt{pi n}}$$



then refer to limit comparison test.



Refer to the related




  • Elementary central binomial coefficient estimates






share|cite|improve this answer











$endgroup$













  • $begingroup$
    The root test is also inconclusive.
    $endgroup$
    – Kemono Chen
    Dec 8 '18 at 11:49










  • $begingroup$
    @KemonoChen Ops yes of course! I see it now...Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 11:54










  • $begingroup$
    Something wrong?
    $endgroup$
    – gimusi
    Dec 8 '18 at 13:09














0












0








0





$begingroup$

HINT



We have that



$$bigg(frac{1}{4}bigg)^n {2n choose n}sim frac{1}{sqrt{pi n}}$$



then refer to limit comparison test.



Refer to the related




  • Elementary central binomial coefficient estimates






share|cite|improve this answer











$endgroup$



HINT



We have that



$$bigg(frac{1}{4}bigg)^n {2n choose n}sim frac{1}{sqrt{pi n}}$$



then refer to limit comparison test.



Refer to the related




  • Elementary central binomial coefficient estimates







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 8 '18 at 12:04

























answered Dec 8 '18 at 11:47









gimusigimusi

93k84594




93k84594












  • $begingroup$
    The root test is also inconclusive.
    $endgroup$
    – Kemono Chen
    Dec 8 '18 at 11:49










  • $begingroup$
    @KemonoChen Ops yes of course! I see it now...Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 11:54










  • $begingroup$
    Something wrong?
    $endgroup$
    – gimusi
    Dec 8 '18 at 13:09


















  • $begingroup$
    The root test is also inconclusive.
    $endgroup$
    – Kemono Chen
    Dec 8 '18 at 11:49










  • $begingroup$
    @KemonoChen Ops yes of course! I see it now...Thanks
    $endgroup$
    – gimusi
    Dec 8 '18 at 11:54










  • $begingroup$
    Something wrong?
    $endgroup$
    – gimusi
    Dec 8 '18 at 13:09
















$begingroup$
The root test is also inconclusive.
$endgroup$
– Kemono Chen
Dec 8 '18 at 11:49




$begingroup$
The root test is also inconclusive.
$endgroup$
– Kemono Chen
Dec 8 '18 at 11:49












$begingroup$
@KemonoChen Ops yes of course! I see it now...Thanks
$endgroup$
– gimusi
Dec 8 '18 at 11:54




$begingroup$
@KemonoChen Ops yes of course! I see it now...Thanks
$endgroup$
– gimusi
Dec 8 '18 at 11:54












$begingroup$
Something wrong?
$endgroup$
– gimusi
Dec 8 '18 at 13:09




$begingroup$
Something wrong?
$endgroup$
– gimusi
Dec 8 '18 at 13:09



Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?