If $T:C[0,1] rightarrow mathbb{R}$ is defined by $T_{x_0}(f)=f(x_0)$ then $||T||=1$.












0












$begingroup$


Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.



$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.



Prove that $||T||=1$.



For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.



Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 29 '18 at 23:09


















0












$begingroup$


Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.



$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.



Prove that $||T||=1$.



For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.



Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 29 '18 at 23:09
















0












0








0





$begingroup$


Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.



$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.



Prove that $||T||=1$.



For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.



Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?










share|cite|improve this question











$endgroup$




Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.



$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.



Prove that $||T||=1$.



For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.



Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?







real-analysis functional-analysis analysis normed-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 '18 at 23:10









José Carlos Santos

160k22126232




160k22126232










asked Nov 29 '18 at 23:05









bbwbbw

50038




50038








  • 1




    $begingroup$
    Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 29 '18 at 23:09
















  • 1




    $begingroup$
    Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 29 '18 at 23:09










1




1




$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09






$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09












1 Answer
1






active

oldest

votes


















3












$begingroup$

Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019364%2fif-tc0-1-rightarrow-mathbbr-is-defined-by-t-x-0f-fx-0-then-t%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.






        share|cite|improve this answer









        $endgroup$



        Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 29 '18 at 23:08









        José Carlos SantosJosé Carlos Santos

        160k22126232




        160k22126232






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019364%2fif-tc0-1-rightarrow-mathbbr-is-defined-by-t-x-0f-fx-0-then-t%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?