How did we come up with this other form for this sum?












1












$begingroup$


Could someone please tell how is it possible to change this sum :



$${x_{3}(m)=frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}} $$



to :



$$ frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l)bigg[sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}}bigg ]$$



?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Could someone please tell how is it possible to change this sum :



    $${x_{3}(m)=frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}} $$



    to :



    $$ frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l)bigg[sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}}bigg ]$$



    ?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Could someone please tell how is it possible to change this sum :



      $${x_{3}(m)=frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}} $$



      to :



      $$ frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l)bigg[sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}}bigg ]$$



      ?










      share|cite|improve this question











      $endgroup$




      Could someone please tell how is it possible to change this sum :



      $${x_{3}(m)=frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}} $$



      to :



      $$ frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l)bigg[sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}}bigg ]$$



      ?







      sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 13:12







      Hilbert

















      asked Dec 3 '18 at 10:12









      HilbertHilbert

      1649




      1649






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          begin{align}&frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} text{, distributive law}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}sum_{l=0}^{N-1}sum_{k=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l) sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}} \
          end{align}



          Notice that we are dealing with finite sum, the order of summation doesn't matter.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:14








          • 1




            $begingroup$
            For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
            $endgroup$
            – Siong Thye Goh
            Dec 3 '18 at 16:19










          • $begingroup$
            Thank you now I can see through it !
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023871%2fhow-did-we-come-up-with-this-other-form-for-this-sum%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          begin{align}&frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} text{, distributive law}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}sum_{l=0}^{N-1}sum_{k=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l) sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}} \
          end{align}



          Notice that we are dealing with finite sum, the order of summation doesn't matter.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:14








          • 1




            $begingroup$
            For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
            $endgroup$
            – Siong Thye Goh
            Dec 3 '18 at 16:19










          • $begingroup$
            Thank you now I can see through it !
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:22
















          2












          $begingroup$

          begin{align}&frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} text{, distributive law}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}sum_{l=0}^{N-1}sum_{k=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l) sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}} \
          end{align}



          Notice that we are dealing with finite sum, the order of summation doesn't matter.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:14








          • 1




            $begingroup$
            For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
            $endgroup$
            – Siong Thye Goh
            Dec 3 '18 at 16:19










          • $begingroup$
            Thank you now I can see through it !
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:22














          2












          2








          2





          $begingroup$

          begin{align}&frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} text{, distributive law}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}sum_{l=0}^{N-1}sum_{k=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l) sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}} \
          end{align}



          Notice that we are dealing with finite sum, the order of summation doesn't matter.






          share|cite|improve this answer









          $endgroup$



          begin{align}&frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} text{, distributive law}\
          &=frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}sum_{l=0}^{N-1}sum_{k=0}^{N-1}x_{1}(n)x_{2}(l) e^{j2pi kfrac{m-n-l}{N}} \
          &=frac{1}{N}sum_{n=0}^{N-1}x_{1}(n)sum_{l=0}^{N-1}x_{2}(l) sum_{k=0}^{N-1}e^{j2pi kfrac{m-n-l}{N}} \
          end{align}



          Notice that we are dealing with finite sum, the order of summation doesn't matter.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 3 '18 at 13:35









          Siong Thye GohSiong Thye Goh

          101k1466118




          101k1466118












          • $begingroup$
            can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:14








          • 1




            $begingroup$
            For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
            $endgroup$
            – Siong Thye Goh
            Dec 3 '18 at 16:19










          • $begingroup$
            Thank you now I can see through it !
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:22


















          • $begingroup$
            can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:14








          • 1




            $begingroup$
            For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
            $endgroup$
            – Siong Thye Goh
            Dec 3 '18 at 16:19










          • $begingroup$
            Thank you now I can see through it !
            $endgroup$
            – Hilbert
            Dec 3 '18 at 16:22
















          $begingroup$
          can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
          $endgroup$
          – Hilbert
          Dec 3 '18 at 16:14






          $begingroup$
          can you please specify how did you use the distributive law in going from :$\ frac{1}{N}sum_{k=0}^{N-1}bigg[sum_{n=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}bigg ]bigg[sum_{l=0}^{N-1}x_{2}(l)e^{-j2pi kfrac{l}{N}}bigg ] e^{j2pi kfrac{m}{N}} $ to : $\ frac{1}{N}sum_{k=0}^{N-1}sum_{n=0}^{N-1}sum_{l=0}^{N-1}x_{1}(n)e^{-j2pi kfrac{n}{N}}x_{2}(l)e^{-j2pi kfrac{l}{N}} e^{j2pi kfrac{m}{N}} \$ Because I think this is really the key step .
          $endgroup$
          – Hilbert
          Dec 3 '18 at 16:14






          1




          1




          $begingroup$
          For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
          $endgroup$
          – Siong Thye Goh
          Dec 3 '18 at 16:19




          $begingroup$
          For example $(a+b+c)(d+e+f)=ad+ae+af+bd+be+bf+cd+cd+cf$. Product of sum is the sum of the product.
          $endgroup$
          – Siong Thye Goh
          Dec 3 '18 at 16:19












          $begingroup$
          Thank you now I can see through it !
          $endgroup$
          – Hilbert
          Dec 3 '18 at 16:22




          $begingroup$
          Thank you now I can see through it !
          $endgroup$
          – Hilbert
          Dec 3 '18 at 16:22


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023871%2fhow-did-we-come-up-with-this-other-form-for-this-sum%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?