Elliptic regularity on compact manifold without boundary











up vote
4
down vote

favorite
1












Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:



For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.










share|cite|improve this question


















  • 1




    I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
    – Neal
    Dec 7 at 2:26






  • 1




    I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
    – S. Cho
    Dec 7 at 19:35















up vote
4
down vote

favorite
1












Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:



For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.










share|cite|improve this question


















  • 1




    I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
    – Neal
    Dec 7 at 2:26






  • 1




    I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
    – S. Cho
    Dec 7 at 19:35













up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:



For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.










share|cite|improve this question













Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:



For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.







reference-request riemannian-geometry elliptic-pde manifolds regularity






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 6 at 23:13









S. Cho

1728




1728








  • 1




    I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
    – Neal
    Dec 7 at 2:26






  • 1




    I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
    – S. Cho
    Dec 7 at 19:35














  • 1




    I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
    – Neal
    Dec 7 at 2:26






  • 1




    I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
    – S. Cho
    Dec 7 at 19:35








1




1




I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
Dec 7 at 2:26




I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
Dec 7 at 2:26




1




1




I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
– S. Cho
Dec 7 at 19:35




I found Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem. In Taylor I. But I don't know if this implies the desired résult. He assume that $u|_{partial M} =0$, in my case there is no boundary.
– S. Cho
Dec 7 at 19:35










3 Answers
3






active

oldest

votes

















up vote
7
down vote













This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.



To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$

where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$

Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$

If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$






share|cite|improve this answer





















  • @Yang Thank you ! Can you recommend a good reference for such proof ?
    – S. Cho
    Dec 7 at 10:32






  • 1




    Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
    – Deane Yang
    Dec 7 at 16:45










  • There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
    – S. Cho
    Dec 7 at 17:22






  • 1




    I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
    – Deane Yang
    Dec 7 at 17:39










  • It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
    – S. Cho
    Dec 7 at 19:31


















up vote
6
down vote













This result is true. This is Theorem 6.30 in:



F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.



While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.






share|cite|improve this answer

















  • 2




    I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
    – Mike Miller
    Dec 7 at 2:48












  • @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
    – S. Cho
    Dec 7 at 10:14






  • 2




    @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
    – Piotr Hajlasz
    Dec 7 at 14:35






  • 3




    @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
    – Deane Yang
    Dec 7 at 16:48


















up vote
0
down vote













A more general theorem with a proof using pseudodifferential operators is Theorem 7.2 in Shubin's book (Pseudodifferential operators and Spectral Theory). In your case the operator is second order and elliptic, so $m=m_0 = 2$ and $rho=1, delta=0$.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f317084%2felliptic-regularity-on-compact-manifold-without-boundary%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    7
    down vote













    This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
    $$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
    where $Delta_0$ is the standard flat Laplacian.



    To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
    $$
    Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
    $$

    where $|a^{ij}|, |b_k| < epsilon << 1$.
    Therefore, if $Delta_g u = f$, then
    $$
    Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
    $$

    Therefore, by $(*)$
    $$
    |u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
    $$

    If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
    $$
    |u|_{H^2} le C|f|_{L^2}.
    $$






    share|cite|improve this answer





















    • @Yang Thank you ! Can you recommend a good reference for such proof ?
      – S. Cho
      Dec 7 at 10:32






    • 1




      Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
      – Deane Yang
      Dec 7 at 16:45










    • There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
      – S. Cho
      Dec 7 at 17:22






    • 1




      I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
      – Deane Yang
      Dec 7 at 17:39










    • It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
      – S. Cho
      Dec 7 at 19:31















    up vote
    7
    down vote













    This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
    $$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
    where $Delta_0$ is the standard flat Laplacian.



    To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
    $$
    Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
    $$

    where $|a^{ij}|, |b_k| < epsilon << 1$.
    Therefore, if $Delta_g u = f$, then
    $$
    Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
    $$

    Therefore, by $(*)$
    $$
    |u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
    $$

    If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
    $$
    |u|_{H^2} le C|f|_{L^2}.
    $$






    share|cite|improve this answer





















    • @Yang Thank you ! Can you recommend a good reference for such proof ?
      – S. Cho
      Dec 7 at 10:32






    • 1




      Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
      – Deane Yang
      Dec 7 at 16:45










    • There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
      – S. Cho
      Dec 7 at 17:22






    • 1




      I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
      – Deane Yang
      Dec 7 at 17:39










    • It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
      – S. Cho
      Dec 7 at 19:31













    up vote
    7
    down vote










    up vote
    7
    down vote









    This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
    $$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
    where $Delta_0$ is the standard flat Laplacian.



    To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
    $$
    Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
    $$

    where $|a^{ij}|, |b_k| < epsilon << 1$.
    Therefore, if $Delta_g u = f$, then
    $$
    Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
    $$

    Therefore, by $(*)$
    $$
    |u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
    $$

    If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
    $$
    |u|_{H^2} le C|f|_{L^2}.
    $$






    share|cite|improve this answer












    This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
    $$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
    where $Delta_0$ is the standard flat Laplacian.



    To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
    $$
    Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
    $$

    where $|a^{ij}|, |b_k| < epsilon << 1$.
    Therefore, if $Delta_g u = f$, then
    $$
    Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
    $$

    Therefore, by $(*)$
    $$
    |u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
    $$

    If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
    $$
    |u|_{H^2} le C|f|_{L^2}.
    $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 7 at 2:24









    Deane Yang

    20k562140




    20k562140












    • @Yang Thank you ! Can you recommend a good reference for such proof ?
      – S. Cho
      Dec 7 at 10:32






    • 1




      Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
      – Deane Yang
      Dec 7 at 16:45










    • There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
      – S. Cho
      Dec 7 at 17:22






    • 1




      I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
      – Deane Yang
      Dec 7 at 17:39










    • It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
      – S. Cho
      Dec 7 at 19:31


















    • @Yang Thank you ! Can you recommend a good reference for such proof ?
      – S. Cho
      Dec 7 at 10:32






    • 1




      Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
      – Deane Yang
      Dec 7 at 16:45










    • There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
      – S. Cho
      Dec 7 at 17:22






    • 1




      I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
      – Deane Yang
      Dec 7 at 17:39










    • It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
      – S. Cho
      Dec 7 at 19:31
















    @Yang Thank you ! Can you recommend a good reference for such proof ?
    – S. Cho
    Dec 7 at 10:32




    @Yang Thank you ! Can you recommend a good reference for such proof ?
    – S. Cho
    Dec 7 at 10:32




    1




    1




    Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
    – Deane Yang
    Dec 7 at 16:45




    Unfortunately, I don't know a reference. Lemmas like this are used all the time by PDE people but, since they're used only in very specific circumstances, they rarely appear in books. Roughly the same argument does appear in the appendix of a paper I wrote on convergence of Riemannian manifolds. It's also similar in the spirit to a technique called "freezing coefficients", so you can try searching for books and papers mentioning that.
    – Deane Yang
    Dec 7 at 16:45












    There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
    – S. Cho
    Dec 7 at 17:22




    There is a similar result in Taylor's book when the $uin H^1_0(M)$. Is this implies the result for my case ?
    – S. Cho
    Dec 7 at 17:22




    1




    1




    I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
    – Deane Yang
    Dec 7 at 17:39




    I don't know. Note that it does suffice to restrict to functions compactly supported in a bounded open domain. Perhaps you could quote the exact statement of what is in Taylor's book.
    – Deane Yang
    Dec 7 at 17:39












    It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
    – S. Cho
    Dec 7 at 19:31




    It's Theorem 1.3. in Section 5 : linear elliptic equations, 1: existence and regularity of solutions to the Dirichlet problem.
    – S. Cho
    Dec 7 at 19:31










    up vote
    6
    down vote













    This result is true. This is Theorem 6.30 in:



    F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.



    While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.






    share|cite|improve this answer

















    • 2




      I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
      – Mike Miller
      Dec 7 at 2:48












    • @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
      – S. Cho
      Dec 7 at 10:14






    • 2




      @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
      – Piotr Hajlasz
      Dec 7 at 14:35






    • 3




      @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
      – Deane Yang
      Dec 7 at 16:48















    up vote
    6
    down vote













    This result is true. This is Theorem 6.30 in:



    F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.



    While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.






    share|cite|improve this answer

















    • 2




      I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
      – Mike Miller
      Dec 7 at 2:48












    • @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
      – S. Cho
      Dec 7 at 10:14






    • 2




      @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
      – Piotr Hajlasz
      Dec 7 at 14:35






    • 3




      @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
      – Deane Yang
      Dec 7 at 16:48













    up vote
    6
    down vote










    up vote
    6
    down vote









    This result is true. This is Theorem 6.30 in:



    F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.



    While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.






    share|cite|improve this answer












    This result is true. This is Theorem 6.30 in:



    F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.



    While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 7 at 0:17









    Piotr Hajlasz

    5,92142253




    5,92142253








    • 2




      I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
      – Mike Miller
      Dec 7 at 2:48












    • @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
      – S. Cho
      Dec 7 at 10:14






    • 2




      @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
      – Piotr Hajlasz
      Dec 7 at 14:35






    • 3




      @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
      – Deane Yang
      Dec 7 at 16:48














    • 2




      I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
      – Mike Miller
      Dec 7 at 2:48












    • @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
      – S. Cho
      Dec 7 at 10:14






    • 2




      @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
      – Piotr Hajlasz
      Dec 7 at 14:35






    • 3




      @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
      – Deane Yang
      Dec 7 at 16:48








    2




    2




    I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
    – Mike Miller
    Dec 7 at 2:48






    I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
    – Mike Miller
    Dec 7 at 2:48














    @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
    – S. Cho
    Dec 7 at 10:14




    @Hajlasz Thank you. Do you mean Theorem 6.30 (Regularity for Periodic Elliptic Operators) since I have an other version of the book.
    – S. Cho
    Dec 7 at 10:14




    2




    2




    @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
    – Piotr Hajlasz
    Dec 7 at 14:35




    @S.Cho I will expand my answer when I am back to the office. Hopefully some time today. I will comment on Warner's proof and add some other references.
    – Piotr Hajlasz
    Dec 7 at 14:35




    3




    3




    @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
    – Deane Yang
    Dec 7 at 16:48




    @PiotrHajlasz, Warner's book is indeed a wonderful self-contained exposition of important theorems in differential topology, whose proofs are not easily found elsewhere. I also like the way he is able to present proofs of the elliptic PDE theorems needed for the Hodge theory in such a elementary way without the fancy modern machinery.
    – Deane Yang
    Dec 7 at 16:48










    up vote
    0
    down vote













    A more general theorem with a proof using pseudodifferential operators is Theorem 7.2 in Shubin's book (Pseudodifferential operators and Spectral Theory). In your case the operator is second order and elliptic, so $m=m_0 = 2$ and $rho=1, delta=0$.






    share|cite|improve this answer

























      up vote
      0
      down vote













      A more general theorem with a proof using pseudodifferential operators is Theorem 7.2 in Shubin's book (Pseudodifferential operators and Spectral Theory). In your case the operator is second order and elliptic, so $m=m_0 = 2$ and $rho=1, delta=0$.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        A more general theorem with a proof using pseudodifferential operators is Theorem 7.2 in Shubin's book (Pseudodifferential operators and Spectral Theory). In your case the operator is second order and elliptic, so $m=m_0 = 2$ and $rho=1, delta=0$.






        share|cite|improve this answer












        A more general theorem with a proof using pseudodifferential operators is Theorem 7.2 in Shubin's book (Pseudodifferential operators and Spectral Theory). In your case the operator is second order and elliptic, so $m=m_0 = 2$ and $rho=1, delta=0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        mcd

        411310




        411310






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f317084%2felliptic-regularity-on-compact-manifold-without-boundary%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?