Solving differential equation












4












$begingroup$


I want to solve the following differential equation with initial conditions:



$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $dfrac{y''}y=dfrac x{sqrt{1-x}}$
    $endgroup$
    – Lucian
    Apr 30 '15 at 16:26






  • 1




    $begingroup$
    Do you believe that there is a closed-form solution?
    $endgroup$
    – Mark Viola
    Apr 30 '15 at 16:44










  • $begingroup$
    I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
    $endgroup$
    – Agheli
    Apr 30 '15 at 16:57






  • 2




    $begingroup$
    @Lucian Yes, and?
    $endgroup$
    – Did
    Apr 30 '15 at 21:47










  • $begingroup$
    If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
    $endgroup$
    – Josh Burby
    Apr 30 '15 at 21:49
















4












$begingroup$


I want to solve the following differential equation with initial conditions:



$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $dfrac{y''}y=dfrac x{sqrt{1-x}}$
    $endgroup$
    – Lucian
    Apr 30 '15 at 16:26






  • 1




    $begingroup$
    Do you believe that there is a closed-form solution?
    $endgroup$
    – Mark Viola
    Apr 30 '15 at 16:44










  • $begingroup$
    I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
    $endgroup$
    – Agheli
    Apr 30 '15 at 16:57






  • 2




    $begingroup$
    @Lucian Yes, and?
    $endgroup$
    – Did
    Apr 30 '15 at 21:47










  • $begingroup$
    If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
    $endgroup$
    – Josh Burby
    Apr 30 '15 at 21:49














4












4








4


1



$begingroup$


I want to solve the following differential equation with initial conditions:



$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?










share|cite|improve this question











$endgroup$




I want to solve the following differential equation with initial conditions:



$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 1 '15 at 10:47







Agheli

















asked Apr 30 '15 at 15:58









AgheliAgheli

212




212








  • 1




    $begingroup$
    $dfrac{y''}y=dfrac x{sqrt{1-x}}$
    $endgroup$
    – Lucian
    Apr 30 '15 at 16:26






  • 1




    $begingroup$
    Do you believe that there is a closed-form solution?
    $endgroup$
    – Mark Viola
    Apr 30 '15 at 16:44










  • $begingroup$
    I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
    $endgroup$
    – Agheli
    Apr 30 '15 at 16:57






  • 2




    $begingroup$
    @Lucian Yes, and?
    $endgroup$
    – Did
    Apr 30 '15 at 21:47










  • $begingroup$
    If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
    $endgroup$
    – Josh Burby
    Apr 30 '15 at 21:49














  • 1




    $begingroup$
    $dfrac{y''}y=dfrac x{sqrt{1-x}}$
    $endgroup$
    – Lucian
    Apr 30 '15 at 16:26






  • 1




    $begingroup$
    Do you believe that there is a closed-form solution?
    $endgroup$
    – Mark Viola
    Apr 30 '15 at 16:44










  • $begingroup$
    I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
    $endgroup$
    – Agheli
    Apr 30 '15 at 16:57






  • 2




    $begingroup$
    @Lucian Yes, and?
    $endgroup$
    – Did
    Apr 30 '15 at 21:47










  • $begingroup$
    If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
    $endgroup$
    – Josh Burby
    Apr 30 '15 at 21:49








1




1




$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26




$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26




1




1




$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44




$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44












$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57




$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57




2




2




$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47




$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47












$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49




$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49










2 Answers
2






active

oldest

votes


















0












$begingroup$

One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:



Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$



Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.



Now we can multipy these expressions and solve for the coefficients $a_n$:



$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.



It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint:



    Let $u=sqrt{1-x}$ ,



    Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$



    $dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$



    $thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$



    $dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$



    $udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$



    Consider generally change the abscissa and the ordinate:



    Let $u=f(v)$ ,



    Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$



    $dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$



    $thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$



    $dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$



    For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes



    $dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks, but I can not solve above your answer.
      $endgroup$
      – Agheli
      May 2 '15 at 6:56











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1259324%2fsolving-differential-equation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:



    Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$



    Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.



    Now we can multipy these expressions and solve for the coefficients $a_n$:



    $y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.



    It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:



      Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$



      Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.



      Now we can multipy these expressions and solve for the coefficients $a_n$:



      $y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.



      It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:



        Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$



        Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.



        Now we can multipy these expressions and solve for the coefficients $a_n$:



        $y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.



        It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.






        share|cite|improve this answer









        $endgroup$



        One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:



        Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$



        Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.



        Now we can multipy these expressions and solve for the coefficients $a_n$:



        $y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.



        It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered May 1 '15 at 11:02









        WSLWSL

        1,906412




        1,906412























            0












            $begingroup$

            Hint:



            Let $u=sqrt{1-x}$ ,



            Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$



            $dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$



            $thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$



            $dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$



            $udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$



            Consider generally change the abscissa and the ordinate:



            Let $u=f(v)$ ,



            Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$



            $dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$



            $thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$



            $dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$



            For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes



            $dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks, but I can not solve above your answer.
              $endgroup$
              – Agheli
              May 2 '15 at 6:56
















            0












            $begingroup$

            Hint:



            Let $u=sqrt{1-x}$ ,



            Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$



            $dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$



            $thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$



            $dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$



            $udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$



            Consider generally change the abscissa and the ordinate:



            Let $u=f(v)$ ,



            Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$



            $dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$



            $thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$



            $dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$



            For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes



            $dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks, but I can not solve above your answer.
              $endgroup$
              – Agheli
              May 2 '15 at 6:56














            0












            0








            0





            $begingroup$

            Hint:



            Let $u=sqrt{1-x}$ ,



            Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$



            $dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$



            $thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$



            $dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$



            $udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$



            Consider generally change the abscissa and the ordinate:



            Let $u=f(v)$ ,



            Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$



            $dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$



            $thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$



            $dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$



            For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes



            $dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$






            share|cite|improve this answer











            $endgroup$



            Hint:



            Let $u=sqrt{1-x}$ ,



            Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$



            $dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$



            $thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$



            $dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$



            $udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$



            Consider generally change the abscissa and the ordinate:



            Let $u=f(v)$ ,



            Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$



            $dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$



            $thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$



            $dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$



            For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes



            $dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 7 '18 at 12:55

























            answered May 1 '15 at 16:41









            doraemonpauldoraemonpaul

            12.6k31660




            12.6k31660












            • $begingroup$
              Thanks, but I can not solve above your answer.
              $endgroup$
              – Agheli
              May 2 '15 at 6:56


















            • $begingroup$
              Thanks, but I can not solve above your answer.
              $endgroup$
              – Agheli
              May 2 '15 at 6:56
















            $begingroup$
            Thanks, but I can not solve above your answer.
            $endgroup$
            – Agheli
            May 2 '15 at 6:56




            $begingroup$
            Thanks, but I can not solve above your answer.
            $endgroup$
            – Agheli
            May 2 '15 at 6:56


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1259324%2fsolving-differential-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?