Is $1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x$












2














If $x ge 5$, is $1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x$



I believe the answer is yes.



Here is my thinking:



(1) $log_2{5} > 2.32 > 2.284 > 1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5}$



(2) Assume up to $x$ that $log_2 x > sumlimits_{i le x}frac{1}{i}$



(3) $(x+1)^{x+1} > {{x+1}choose{x+1}}x^{x+1} + {{x+1}choose{x}}x^x = x^{x+1} + (x+1)x^x = 2x^{x+1} + x^x > 2(x^{x+1})$



(4) $(x+1)log_2left(frac{x+1}{x}right) > 1$



(5) $log_2(x+1) - log_2(x) > frac{1}{x+1}$



(6) $log_2(x+1) - log_2(x) + log_2(x) = log_2(x+1) > sumlimits_{i le x+1}frac{1}{i}$










share|cite|improve this question






















  • See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
    – Arthur
    Nov 23 '18 at 7:59












  • Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
    – Larry Freeman
    Nov 23 '18 at 8:07










  • It also shows that $1+ln xgeq1+1/2+cdots$.
    – Arthur
    Nov 23 '18 at 8:10












  • ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
    – Larry Freeman
    Nov 23 '18 at 8:17










  • And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
    – Arthur
    Nov 23 '18 at 8:23


















2














If $x ge 5$, is $1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x$



I believe the answer is yes.



Here is my thinking:



(1) $log_2{5} > 2.32 > 2.284 > 1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5}$



(2) Assume up to $x$ that $log_2 x > sumlimits_{i le x}frac{1}{i}$



(3) $(x+1)^{x+1} > {{x+1}choose{x+1}}x^{x+1} + {{x+1}choose{x}}x^x = x^{x+1} + (x+1)x^x = 2x^{x+1} + x^x > 2(x^{x+1})$



(4) $(x+1)log_2left(frac{x+1}{x}right) > 1$



(5) $log_2(x+1) - log_2(x) > frac{1}{x+1}$



(6) $log_2(x+1) - log_2(x) + log_2(x) = log_2(x+1) > sumlimits_{i le x+1}frac{1}{i}$










share|cite|improve this question






















  • See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
    – Arthur
    Nov 23 '18 at 7:59












  • Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
    – Larry Freeman
    Nov 23 '18 at 8:07










  • It also shows that $1+ln xgeq1+1/2+cdots$.
    – Arthur
    Nov 23 '18 at 8:10












  • ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
    – Larry Freeman
    Nov 23 '18 at 8:17










  • And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
    – Arthur
    Nov 23 '18 at 8:23
















2












2








2


1





If $x ge 5$, is $1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x$



I believe the answer is yes.



Here is my thinking:



(1) $log_2{5} > 2.32 > 2.284 > 1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5}$



(2) Assume up to $x$ that $log_2 x > sumlimits_{i le x}frac{1}{i}$



(3) $(x+1)^{x+1} > {{x+1}choose{x+1}}x^{x+1} + {{x+1}choose{x}}x^x = x^{x+1} + (x+1)x^x = 2x^{x+1} + x^x > 2(x^{x+1})$



(4) $(x+1)log_2left(frac{x+1}{x}right) > 1$



(5) $log_2(x+1) - log_2(x) > frac{1}{x+1}$



(6) $log_2(x+1) - log_2(x) + log_2(x) = log_2(x+1) > sumlimits_{i le x+1}frac{1}{i}$










share|cite|improve this question













If $x ge 5$, is $1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x$



I believe the answer is yes.



Here is my thinking:



(1) $log_2{5} > 2.32 > 2.284 > 1 + frac{1}{2} + frac{1}{3} + frac{1}{4} + frac{1}{5}$



(2) Assume up to $x$ that $log_2 x > sumlimits_{i le x}frac{1}{i}$



(3) $(x+1)^{x+1} > {{x+1}choose{x+1}}x^{x+1} + {{x+1}choose{x}}x^x = x^{x+1} + (x+1)x^x = 2x^{x+1} + x^x > 2(x^{x+1})$



(4) $(x+1)log_2left(frac{x+1}{x}right) > 1$



(5) $log_2(x+1) - log_2(x) > frac{1}{x+1}$



(6) $log_2(x+1) - log_2(x) + log_2(x) = log_2(x+1) > sumlimits_{i le x+1}frac{1}{i}$







proof-verification inequality logarithms harmonic-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 23 '18 at 7:55









Larry FreemanLarry Freeman

3,24121239




3,24121239












  • See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
    – Arthur
    Nov 23 '18 at 7:59












  • Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
    – Larry Freeman
    Nov 23 '18 at 8:07










  • It also shows that $1+ln xgeq1+1/2+cdots$.
    – Arthur
    Nov 23 '18 at 8:10












  • ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
    – Larry Freeman
    Nov 23 '18 at 8:17










  • And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
    – Arthur
    Nov 23 '18 at 8:23




















  • See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
    – Arthur
    Nov 23 '18 at 7:59












  • Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
    – Larry Freeman
    Nov 23 '18 at 8:07










  • It also shows that $1+ln xgeq1+1/2+cdots$.
    – Arthur
    Nov 23 '18 at 8:10












  • ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
    – Larry Freeman
    Nov 23 '18 at 8:17










  • And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
    – Arthur
    Nov 23 '18 at 8:23


















See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
– Arthur
Nov 23 '18 at 7:59






See this Wikipedia article, then consider $ln x= ln 2cdot log_2 x$
– Arthur
Nov 23 '18 at 7:59














Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
– Larry Freeman
Nov 23 '18 at 8:07




Thanks, Arthur but I'm not clear if you are saying it is true or false. $ln 2 < 0.694$ so that $ln 2 < log_2 x$. The article shows that $ln x < 1 + 1/2 + dots + 1/x$. I am not clear what that says about my question.
– Larry Freeman
Nov 23 '18 at 8:07












It also shows that $1+ln xgeq1+1/2+cdots$.
– Arthur
Nov 23 '18 at 8:10






It also shows that $1+ln xgeq1+1/2+cdots$.
– Arthur
Nov 23 '18 at 8:10














ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
– Larry Freeman
Nov 23 '18 at 8:17




ok. Now I get it. You are saying it is true because for $x > 11, log_2 x > (ln x)frac{10}{7} > ln x + 1$ Thanks.
– Larry Freeman
Nov 23 '18 at 8:17












And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
– Arthur
Nov 23 '18 at 8:23






And then you can check by hand which cases $xleq 11$ it is true for as well. Exactly.
– Arthur
Nov 23 '18 at 8:23












3 Answers
3






active

oldest

votes


















2














We have that



$$1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x iff 1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < frac{ln x}{ln 2}$$



$$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right)< ln x$$



then recall that by harmonic series



$$sum_{k=1}^x frac1k simln x+gamma+frac1{2x}$$



then



$$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right) sim ln 2ln x+gammaln 2+frac{ln 2}{2x}stackrel{?}<ln x$$



$$(1-ln 2)ln x> gammaln 2+frac{ln 2}{2x}$$



which is true for $x$ sufficiently large.






share|cite|improve this answer























  • After "harmonic series" your summation has an error (the summand should be $1/k$)
    – YiFan
    Nov 23 '18 at 9:29










  • @YiFan Opssss...yes of course I fix the typo. Thanks!
    – gimusi
    Nov 23 '18 at 9:45



















1














We can use induction as well. If we assume that it's true for $n$:
$$1+frac{1}{2}+...+frac{1}{n}+frac{1}{n+1}<log_2(n)+frac{1}{n+1}$$
So we need to prove that
$$log_2(n)+frac{1}{n+1} < log_2(n+1)$$
$$frac{1}{n+1}< log_2left(1+frac{1}{n}right)$$
$$2^{frac{1}{n+1}}<1+frac{1}{n}$$
$$2<left(1+frac{1}{n}right)^{n+1}$$
$$2<left(1+frac{1}{n}right) left(1+frac{1}{n}right)^n$$
And it's true, because
$$1+frac{1}{n}>1$$
And by Bernoulli's inequality:
$$left(1+frac{1}{n}right)^n geq 1+n frac{1}{n}=2$$
So we just need to find a good starting $n$. Let's check it for $n=6$:
$$1+frac{1}{2}+frac{1}{3}+frac{1}{4}+frac{1}{5}+frac{1}{6}<log_2(6)$$
$$frac{9}{20}<log_2({6/4})$$
$$2^{frac{9}{20}}<frac{6}{4}$$
And by Bernoulli's inequality,
$$2^{frac{9}{20}}<1+frac{9}{20}<1+frac{10}{20}=frac{6}{4}$$
So it's true $forall ngeq 6 land n in mathbb{N}$ (it's true for $n=5$ as well, but Bernoulli is not helping in that case).






share|cite|improve this answer































    1














    Yes because $H_n-log n$ is bounded by $1$ and $log_2n$ is a multiple of $log n$.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010094%2fis-1-frac12-frac13-dots-frac1x-log-2-x%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2














      We have that



      $$1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x iff 1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < frac{ln x}{ln 2}$$



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right)< ln x$$



      then recall that by harmonic series



      $$sum_{k=1}^x frac1k simln x+gamma+frac1{2x}$$



      then



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right) sim ln 2ln x+gammaln 2+frac{ln 2}{2x}stackrel{?}<ln x$$



      $$(1-ln 2)ln x> gammaln 2+frac{ln 2}{2x}$$



      which is true for $x$ sufficiently large.






      share|cite|improve this answer























      • After "harmonic series" your summation has an error (the summand should be $1/k$)
        – YiFan
        Nov 23 '18 at 9:29










      • @YiFan Opssss...yes of course I fix the typo. Thanks!
        – gimusi
        Nov 23 '18 at 9:45
















      2














      We have that



      $$1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x iff 1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < frac{ln x}{ln 2}$$



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right)< ln x$$



      then recall that by harmonic series



      $$sum_{k=1}^x frac1k simln x+gamma+frac1{2x}$$



      then



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right) sim ln 2ln x+gammaln 2+frac{ln 2}{2x}stackrel{?}<ln x$$



      $$(1-ln 2)ln x> gammaln 2+frac{ln 2}{2x}$$



      which is true for $x$ sufficiently large.






      share|cite|improve this answer























      • After "harmonic series" your summation has an error (the summand should be $1/k$)
        – YiFan
        Nov 23 '18 at 9:29










      • @YiFan Opssss...yes of course I fix the typo. Thanks!
        – gimusi
        Nov 23 '18 at 9:45














      2












      2








      2






      We have that



      $$1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x iff 1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < frac{ln x}{ln 2}$$



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right)< ln x$$



      then recall that by harmonic series



      $$sum_{k=1}^x frac1k simln x+gamma+frac1{2x}$$



      then



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right) sim ln 2ln x+gammaln 2+frac{ln 2}{2x}stackrel{?}<ln x$$



      $$(1-ln 2)ln x> gammaln 2+frac{ln 2}{2x}$$



      which is true for $x$ sufficiently large.






      share|cite|improve this answer














      We have that



      $$1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < log_2 x iff 1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} < frac{ln x}{ln 2}$$



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right)< ln x$$



      then recall that by harmonic series



      $$sum_{k=1}^x frac1k simln x+gamma+frac1{2x}$$



      then



      $$ln 2left(1 + frac{1}{2} + frac{1}{3} + dots + frac{1}{x} right) sim ln 2ln x+gammaln 2+frac{ln 2}{2x}stackrel{?}<ln x$$



      $$(1-ln 2)ln x> gammaln 2+frac{ln 2}{2x}$$



      which is true for $x$ sufficiently large.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Nov 23 '18 at 9:46

























      answered Nov 23 '18 at 8:42









      gimusigimusi

      1




      1












      • After "harmonic series" your summation has an error (the summand should be $1/k$)
        – YiFan
        Nov 23 '18 at 9:29










      • @YiFan Opssss...yes of course I fix the typo. Thanks!
        – gimusi
        Nov 23 '18 at 9:45


















      • After "harmonic series" your summation has an error (the summand should be $1/k$)
        – YiFan
        Nov 23 '18 at 9:29










      • @YiFan Opssss...yes of course I fix the typo. Thanks!
        – gimusi
        Nov 23 '18 at 9:45
















      After "harmonic series" your summation has an error (the summand should be $1/k$)
      – YiFan
      Nov 23 '18 at 9:29




      After "harmonic series" your summation has an error (the summand should be $1/k$)
      – YiFan
      Nov 23 '18 at 9:29












      @YiFan Opssss...yes of course I fix the typo. Thanks!
      – gimusi
      Nov 23 '18 at 9:45




      @YiFan Opssss...yes of course I fix the typo. Thanks!
      – gimusi
      Nov 23 '18 at 9:45











      1














      We can use induction as well. If we assume that it's true for $n$:
      $$1+frac{1}{2}+...+frac{1}{n}+frac{1}{n+1}<log_2(n)+frac{1}{n+1}$$
      So we need to prove that
      $$log_2(n)+frac{1}{n+1} < log_2(n+1)$$
      $$frac{1}{n+1}< log_2left(1+frac{1}{n}right)$$
      $$2^{frac{1}{n+1}}<1+frac{1}{n}$$
      $$2<left(1+frac{1}{n}right)^{n+1}$$
      $$2<left(1+frac{1}{n}right) left(1+frac{1}{n}right)^n$$
      And it's true, because
      $$1+frac{1}{n}>1$$
      And by Bernoulli's inequality:
      $$left(1+frac{1}{n}right)^n geq 1+n frac{1}{n}=2$$
      So we just need to find a good starting $n$. Let's check it for $n=6$:
      $$1+frac{1}{2}+frac{1}{3}+frac{1}{4}+frac{1}{5}+frac{1}{6}<log_2(6)$$
      $$frac{9}{20}<log_2({6/4})$$
      $$2^{frac{9}{20}}<frac{6}{4}$$
      And by Bernoulli's inequality,
      $$2^{frac{9}{20}}<1+frac{9}{20}<1+frac{10}{20}=frac{6}{4}$$
      So it's true $forall ngeq 6 land n in mathbb{N}$ (it's true for $n=5$ as well, but Bernoulli is not helping in that case).






      share|cite|improve this answer




























        1














        We can use induction as well. If we assume that it's true for $n$:
        $$1+frac{1}{2}+...+frac{1}{n}+frac{1}{n+1}<log_2(n)+frac{1}{n+1}$$
        So we need to prove that
        $$log_2(n)+frac{1}{n+1} < log_2(n+1)$$
        $$frac{1}{n+1}< log_2left(1+frac{1}{n}right)$$
        $$2^{frac{1}{n+1}}<1+frac{1}{n}$$
        $$2<left(1+frac{1}{n}right)^{n+1}$$
        $$2<left(1+frac{1}{n}right) left(1+frac{1}{n}right)^n$$
        And it's true, because
        $$1+frac{1}{n}>1$$
        And by Bernoulli's inequality:
        $$left(1+frac{1}{n}right)^n geq 1+n frac{1}{n}=2$$
        So we just need to find a good starting $n$. Let's check it for $n=6$:
        $$1+frac{1}{2}+frac{1}{3}+frac{1}{4}+frac{1}{5}+frac{1}{6}<log_2(6)$$
        $$frac{9}{20}<log_2({6/4})$$
        $$2^{frac{9}{20}}<frac{6}{4}$$
        And by Bernoulli's inequality,
        $$2^{frac{9}{20}}<1+frac{9}{20}<1+frac{10}{20}=frac{6}{4}$$
        So it's true $forall ngeq 6 land n in mathbb{N}$ (it's true for $n=5$ as well, but Bernoulli is not helping in that case).






        share|cite|improve this answer


























          1












          1








          1






          We can use induction as well. If we assume that it's true for $n$:
          $$1+frac{1}{2}+...+frac{1}{n}+frac{1}{n+1}<log_2(n)+frac{1}{n+1}$$
          So we need to prove that
          $$log_2(n)+frac{1}{n+1} < log_2(n+1)$$
          $$frac{1}{n+1}< log_2left(1+frac{1}{n}right)$$
          $$2^{frac{1}{n+1}}<1+frac{1}{n}$$
          $$2<left(1+frac{1}{n}right)^{n+1}$$
          $$2<left(1+frac{1}{n}right) left(1+frac{1}{n}right)^n$$
          And it's true, because
          $$1+frac{1}{n}>1$$
          And by Bernoulli's inequality:
          $$left(1+frac{1}{n}right)^n geq 1+n frac{1}{n}=2$$
          So we just need to find a good starting $n$. Let's check it for $n=6$:
          $$1+frac{1}{2}+frac{1}{3}+frac{1}{4}+frac{1}{5}+frac{1}{6}<log_2(6)$$
          $$frac{9}{20}<log_2({6/4})$$
          $$2^{frac{9}{20}}<frac{6}{4}$$
          And by Bernoulli's inequality,
          $$2^{frac{9}{20}}<1+frac{9}{20}<1+frac{10}{20}=frac{6}{4}$$
          So it's true $forall ngeq 6 land n in mathbb{N}$ (it's true for $n=5$ as well, but Bernoulli is not helping in that case).






          share|cite|improve this answer














          We can use induction as well. If we assume that it's true for $n$:
          $$1+frac{1}{2}+...+frac{1}{n}+frac{1}{n+1}<log_2(n)+frac{1}{n+1}$$
          So we need to prove that
          $$log_2(n)+frac{1}{n+1} < log_2(n+1)$$
          $$frac{1}{n+1}< log_2left(1+frac{1}{n}right)$$
          $$2^{frac{1}{n+1}}<1+frac{1}{n}$$
          $$2<left(1+frac{1}{n}right)^{n+1}$$
          $$2<left(1+frac{1}{n}right) left(1+frac{1}{n}right)^n$$
          And it's true, because
          $$1+frac{1}{n}>1$$
          And by Bernoulli's inequality:
          $$left(1+frac{1}{n}right)^n geq 1+n frac{1}{n}=2$$
          So we just need to find a good starting $n$. Let's check it for $n=6$:
          $$1+frac{1}{2}+frac{1}{3}+frac{1}{4}+frac{1}{5}+frac{1}{6}<log_2(6)$$
          $$frac{9}{20}<log_2({6/4})$$
          $$2^{frac{9}{20}}<frac{6}{4}$$
          And by Bernoulli's inequality,
          $$2^{frac{9}{20}}<1+frac{9}{20}<1+frac{10}{20}=frac{6}{4}$$
          So it's true $forall ngeq 6 land n in mathbb{N}$ (it's true for $n=5$ as well, but Bernoulli is not helping in that case).







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 23 '18 at 10:51

























          answered Nov 23 '18 at 10:34









          BotondBotond

          5,5882732




          5,5882732























              1














              Yes because $H_n-log n$ is bounded by $1$ and $log_2n$ is a multiple of $log n$.






              share|cite|improve this answer


























                1














                Yes because $H_n-log n$ is bounded by $1$ and $log_2n$ is a multiple of $log n$.






                share|cite|improve this answer
























                  1












                  1








                  1






                  Yes because $H_n-log n$ is bounded by $1$ and $log_2n$ is a multiple of $log n$.






                  share|cite|improve this answer












                  Yes because $H_n-log n$ is bounded by $1$ and $log_2n$ is a multiple of $log n$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 23 '18 at 10:58









                  Yves DaoustYves Daoust

                  124k671222




                  124k671222






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010094%2fis-1-frac12-frac13-dots-frac1x-log-2-x%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?