Sum of two infinite complex geometric sums











up vote
5
down vote

favorite













let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question
























  • Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
    – Yadati Kiran
    Nov 15 at 11:21

















up vote
5
down vote

favorite













let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question
























  • Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
    – Yadati Kiran
    Nov 15 at 11:21















up vote
5
down vote

favorite









up vote
5
down vote

favorite












let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.










share|cite|improve this question
















let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.




so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$



So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?



So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.







sequences-and-series complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 15 at 15:39

























asked Nov 15 at 11:14









H.Linkhorn

12311




12311












  • Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
    – Yadati Kiran
    Nov 15 at 11:21




















  • Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
    – Yadati Kiran
    Nov 15 at 11:21


















Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21






Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21












3 Answers
3






active

oldest

votes

















up vote
3
down vote



accepted










HINT



We have that



$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$



then refer to geometric series which holds also for $r$ complex $|r|<1$.






share|cite|improve this answer























  • I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
    – H.Linkhorn
    Nov 17 at 18:31












  • @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
    – gimusi
    Nov 17 at 21:36




















up vote
4
down vote













Hint:



Using Intuition behind euler's formula and the special case $e^{ipi}=-1$



$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$



Now for the common ratio$(r)$ of Geometric Series,



$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$






share|cite|improve this answer




























    up vote
    0
    down vote













    Hint: Consider geometric series
    $$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
    about $z=0$.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      3
      down vote



      accepted










      HINT



      We have that



      $$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
      =-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$



      then refer to geometric series which holds also for $r$ complex $|r|<1$.






      share|cite|improve this answer























      • I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
        – H.Linkhorn
        Nov 17 at 18:31












      • @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
        – gimusi
        Nov 17 at 21:36

















      up vote
      3
      down vote



      accepted










      HINT



      We have that



      $$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
      =-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$



      then refer to geometric series which holds also for $r$ complex $|r|<1$.






      share|cite|improve this answer























      • I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
        – H.Linkhorn
        Nov 17 at 18:31












      • @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
        – gimusi
        Nov 17 at 21:36















      up vote
      3
      down vote



      accepted







      up vote
      3
      down vote



      accepted






      HINT



      We have that



      $$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
      =-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$



      then refer to geometric series which holds also for $r$ complex $|r|<1$.






      share|cite|improve this answer














      HINT



      We have that



      $$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
      =-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$



      then refer to geometric series which holds also for $r$ complex $|r|<1$.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Nov 15 at 11:28

























      answered Nov 15 at 11:21









      gimusi

      86k74294




      86k74294












      • I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
        – H.Linkhorn
        Nov 17 at 18:31












      • @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
        – gimusi
        Nov 17 at 21:36




















      • I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
        – H.Linkhorn
        Nov 17 at 18:31












      • @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
        – gimusi
        Nov 17 at 21:36


















      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
      – H.Linkhorn
      Nov 17 at 18:31






      I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
      – H.Linkhorn
      Nov 17 at 18:31














      @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
      – gimusi
      Nov 17 at 21:36






      @H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
      – gimusi
      Nov 17 at 21:36












      up vote
      4
      down vote













      Hint:



      Using Intuition behind euler's formula and the special case $e^{ipi}=-1$



      $$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$



      Now for the common ratio$(r)$ of Geometric Series,



      $|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$






      share|cite|improve this answer

























        up vote
        4
        down vote













        Hint:



        Using Intuition behind euler's formula and the special case $e^{ipi}=-1$



        $$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$



        Now for the common ratio$(r)$ of Geometric Series,



        $|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$






        share|cite|improve this answer























          up vote
          4
          down vote










          up vote
          4
          down vote









          Hint:



          Using Intuition behind euler's formula and the special case $e^{ipi}=-1$



          $$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$



          Now for the common ratio$(r)$ of Geometric Series,



          $|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$






          share|cite|improve this answer












          Hint:



          Using Intuition behind euler's formula and the special case $e^{ipi}=-1$



          $$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$



          Now for the common ratio$(r)$ of Geometric Series,



          $|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 15 at 11:21









          lab bhattacharjee

          220k15154271




          220k15154271






















              up vote
              0
              down vote













              Hint: Consider geometric series
              $$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
              about $z=0$.






              share|cite|improve this answer

























                up vote
                0
                down vote













                Hint: Consider geometric series
                $$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
                about $z=0$.






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Hint: Consider geometric series
                  $$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
                  about $z=0$.






                  share|cite|improve this answer












                  Hint: Consider geometric series
                  $$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
                  about $z=0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 15 at 11:22









                  Nosrati

                  25.9k62252




                  25.9k62252






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?