How to solve a system of ODE's using laplace transform?












2












$begingroup$


System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$



Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$



The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$



This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
    $endgroup$
    – LutzL
    Dec 10 '18 at 16:20










  • $begingroup$
    I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
    $endgroup$
    – Elliot Silver
    Dec 10 '18 at 16:22










  • $begingroup$
    @ElliotSilver You can still use Laplace transform after using LutzL's hint
    $endgroup$
    – Federico
    Dec 10 '18 at 16:43










  • $begingroup$
    Or compute the sums and differences after the Laplace transform.
    $endgroup$
    – LutzL
    Dec 11 '18 at 17:53
















2












$begingroup$


System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$



Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$



The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$



This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
    $endgroup$
    – LutzL
    Dec 10 '18 at 16:20










  • $begingroup$
    I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
    $endgroup$
    – Elliot Silver
    Dec 10 '18 at 16:22










  • $begingroup$
    @ElliotSilver You can still use Laplace transform after using LutzL's hint
    $endgroup$
    – Federico
    Dec 10 '18 at 16:43










  • $begingroup$
    Or compute the sums and differences after the Laplace transform.
    $endgroup$
    – LutzL
    Dec 11 '18 at 17:53














2












2








2





$begingroup$


System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$



Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$



The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$



This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?










share|cite|improve this question









$endgroup$




System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$



Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$



The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$



This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?







ordinary-differential-equations laplace-transform






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 10 '18 at 16:13









Elliot SilverElliot Silver

406




406












  • $begingroup$
    You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
    $endgroup$
    – LutzL
    Dec 10 '18 at 16:20










  • $begingroup$
    I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
    $endgroup$
    – Elliot Silver
    Dec 10 '18 at 16:22










  • $begingroup$
    @ElliotSilver You can still use Laplace transform after using LutzL's hint
    $endgroup$
    – Federico
    Dec 10 '18 at 16:43










  • $begingroup$
    Or compute the sums and differences after the Laplace transform.
    $endgroup$
    – LutzL
    Dec 11 '18 at 17:53


















  • $begingroup$
    You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
    $endgroup$
    – LutzL
    Dec 10 '18 at 16:20










  • $begingroup$
    I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
    $endgroup$
    – Elliot Silver
    Dec 10 '18 at 16:22










  • $begingroup$
    @ElliotSilver You can still use Laplace transform after using LutzL's hint
    $endgroup$
    – Federico
    Dec 10 '18 at 16:43










  • $begingroup$
    Or compute the sums and differences after the Laplace transform.
    $endgroup$
    – LutzL
    Dec 11 '18 at 17:53
















$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20




$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20












$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22




$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22












$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43




$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43












$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53




$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53










1 Answer
1






active

oldest

votes


















1












$begingroup$

If you do partial fractions this is what you should get



$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$



Use the transform for each term



$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$





EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that



begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}



And from here you conclude



begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}



And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
    $endgroup$
    – Elliot Silver
    Dec 11 '18 at 13:02










  • $begingroup$
    @ElliotSilver Updated answer
    $endgroup$
    – caverac
    Dec 11 '18 at 17:37










  • $begingroup$
    Thanks a lot, I see where i went wrong now. Appreciate the help :)
    $endgroup$
    – Elliot Silver
    Dec 12 '18 at 11:40










  • $begingroup$
    @ElliotSilver Happy to help
    $endgroup$
    – caverac
    Dec 12 '18 at 12:14











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034108%2fhow-to-solve-a-system-of-odes-using-laplace-transform%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

If you do partial fractions this is what you should get



$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$



Use the transform for each term



$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$





EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that



begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}



And from here you conclude



begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}



And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
    $endgroup$
    – Elliot Silver
    Dec 11 '18 at 13:02










  • $begingroup$
    @ElliotSilver Updated answer
    $endgroup$
    – caverac
    Dec 11 '18 at 17:37










  • $begingroup$
    Thanks a lot, I see where i went wrong now. Appreciate the help :)
    $endgroup$
    – Elliot Silver
    Dec 12 '18 at 11:40










  • $begingroup$
    @ElliotSilver Happy to help
    $endgroup$
    – caverac
    Dec 12 '18 at 12:14
















1












$begingroup$

If you do partial fractions this is what you should get



$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$



Use the transform for each term



$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$





EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that



begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}



And from here you conclude



begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}



And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
    $endgroup$
    – Elliot Silver
    Dec 11 '18 at 13:02










  • $begingroup$
    @ElliotSilver Updated answer
    $endgroup$
    – caverac
    Dec 11 '18 at 17:37










  • $begingroup$
    Thanks a lot, I see where i went wrong now. Appreciate the help :)
    $endgroup$
    – Elliot Silver
    Dec 12 '18 at 11:40










  • $begingroup$
    @ElliotSilver Happy to help
    $endgroup$
    – caverac
    Dec 12 '18 at 12:14














1












1








1





$begingroup$

If you do partial fractions this is what you should get



$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$



Use the transform for each term



$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$





EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that



begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}



And from here you conclude



begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}



And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$






share|cite|improve this answer











$endgroup$



If you do partial fractions this is what you should get



$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$



Use the transform for each term



$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$





EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that



begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}



And from here you conclude



begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}



And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 11 '18 at 17:37

























answered Dec 10 '18 at 16:36









caveraccaverac

14.8k31130




14.8k31130












  • $begingroup$
    Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
    $endgroup$
    – Elliot Silver
    Dec 11 '18 at 13:02










  • $begingroup$
    @ElliotSilver Updated answer
    $endgroup$
    – caverac
    Dec 11 '18 at 17:37










  • $begingroup$
    Thanks a lot, I see where i went wrong now. Appreciate the help :)
    $endgroup$
    – Elliot Silver
    Dec 12 '18 at 11:40










  • $begingroup$
    @ElliotSilver Happy to help
    $endgroup$
    – caverac
    Dec 12 '18 at 12:14


















  • $begingroup$
    Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
    $endgroup$
    – Elliot Silver
    Dec 11 '18 at 13:02










  • $begingroup$
    @ElliotSilver Updated answer
    $endgroup$
    – caverac
    Dec 11 '18 at 17:37










  • $begingroup$
    Thanks a lot, I see where i went wrong now. Appreciate the help :)
    $endgroup$
    – Elliot Silver
    Dec 12 '18 at 11:40










  • $begingroup$
    @ElliotSilver Happy to help
    $endgroup$
    – caverac
    Dec 12 '18 at 12:14
















$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02




$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02












$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37




$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37












$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40




$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40












$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14




$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034108%2fhow-to-solve-a-system-of-odes-using-laplace-transform%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?