solving for x in $x^x-x^{-x}=(1+x)^{-x}$












1












$begingroup$


I'm trying to solve $x^x-x^{-x}=(1+x)^{-x}$.
I tried to express $x^x-x^{-x}$ as $2 sinh(x ln x)$ but it didn't seem to make things easier. Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $x>0$, $x^x = e^{xln x}$.
    $endgroup$
    – Wuestenfux
    Nov 29 '18 at 15:14






  • 1




    $begingroup$
    $x=-1$ is an obvious solution.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:15












  • $begingroup$
    @AlexSilva Well, watch out for the RHS ...
    $endgroup$
    – Michael Hoppe
    Nov 29 '18 at 15:24












  • $begingroup$
    $x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
    $endgroup$
    – Lance
    Nov 29 '18 at 15:27












  • $begingroup$
    @MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:30


















1












$begingroup$


I'm trying to solve $x^x-x^{-x}=(1+x)^{-x}$.
I tried to express $x^x-x^{-x}$ as $2 sinh(x ln x)$ but it didn't seem to make things easier. Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $x>0$, $x^x = e^{xln x}$.
    $endgroup$
    – Wuestenfux
    Nov 29 '18 at 15:14






  • 1




    $begingroup$
    $x=-1$ is an obvious solution.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:15












  • $begingroup$
    @AlexSilva Well, watch out for the RHS ...
    $endgroup$
    – Michael Hoppe
    Nov 29 '18 at 15:24












  • $begingroup$
    $x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
    $endgroup$
    – Lance
    Nov 29 '18 at 15:27












  • $begingroup$
    @MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:30
















1












1








1





$begingroup$


I'm trying to solve $x^x-x^{-x}=(1+x)^{-x}$.
I tried to express $x^x-x^{-x}$ as $2 sinh(x ln x)$ but it didn't seem to make things easier. Any ideas?










share|cite|improve this question











$endgroup$




I'm trying to solve $x^x-x^{-x}=(1+x)^{-x}$.
I tried to express $x^x-x^{-x}$ as $2 sinh(x ln x)$ but it didn't seem to make things easier. Any ideas?







algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 29 '18 at 15:18









axblount

1,99811016




1,99811016










asked Nov 29 '18 at 15:01









Juan Pablo ArcilaJuan Pablo Arcila

412




412












  • $begingroup$
    For $x>0$, $x^x = e^{xln x}$.
    $endgroup$
    – Wuestenfux
    Nov 29 '18 at 15:14






  • 1




    $begingroup$
    $x=-1$ is an obvious solution.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:15












  • $begingroup$
    @AlexSilva Well, watch out for the RHS ...
    $endgroup$
    – Michael Hoppe
    Nov 29 '18 at 15:24












  • $begingroup$
    $x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
    $endgroup$
    – Lance
    Nov 29 '18 at 15:27












  • $begingroup$
    @MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:30




















  • $begingroup$
    For $x>0$, $x^x = e^{xln x}$.
    $endgroup$
    – Wuestenfux
    Nov 29 '18 at 15:14






  • 1




    $begingroup$
    $x=-1$ is an obvious solution.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:15












  • $begingroup$
    @AlexSilva Well, watch out for the RHS ...
    $endgroup$
    – Michael Hoppe
    Nov 29 '18 at 15:24












  • $begingroup$
    $x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
    $endgroup$
    – Lance
    Nov 29 '18 at 15:27












  • $begingroup$
    @MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
    $endgroup$
    – Alex Silva
    Nov 29 '18 at 15:30


















$begingroup$
For $x>0$, $x^x = e^{xln x}$.
$endgroup$
– Wuestenfux
Nov 29 '18 at 15:14




$begingroup$
For $x>0$, $x^x = e^{xln x}$.
$endgroup$
– Wuestenfux
Nov 29 '18 at 15:14




1




1




$begingroup$
$x=-1$ is an obvious solution.
$endgroup$
– Alex Silva
Nov 29 '18 at 15:15






$begingroup$
$x=-1$ is an obvious solution.
$endgroup$
– Alex Silva
Nov 29 '18 at 15:15














$begingroup$
@AlexSilva Well, watch out for the RHS ...
$endgroup$
– Michael Hoppe
Nov 29 '18 at 15:24






$begingroup$
@AlexSilva Well, watch out for the RHS ...
$endgroup$
– Michael Hoppe
Nov 29 '18 at 15:24














$begingroup$
$x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
$endgroup$
– Lance
Nov 29 '18 at 15:27






$begingroup$
$x^x$ should be generally regarded as define on $(0,infty)$. Let $f(x)=x^x, g(x)=x^{-x}+(1+x)^{-x}$. Function graphs shows that there is one and only one intersection in $(1,2)$. Highly doubt there will be an analytical solution.
$endgroup$
– Lance
Nov 29 '18 at 15:27














$begingroup$
@MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
$endgroup$
– Alex Silva
Nov 29 '18 at 15:30






$begingroup$
@MichaelHoppe, the RHS gives $(1-1)^{1}=0$. Am I wrong? I think $x^x$ is well defined for $x < 0$ and $x in mathbb{Z}$.
$endgroup$
– Alex Silva
Nov 29 '18 at 15:30












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018731%2fsolving-for-x-in-xx-x-x-1x-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018731%2fsolving-for-x-in-xx-x-x-1x-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?