Solution of complex differential equation involving $2$ variables











up vote
1
down vote

favorite













Solve the differential equation



$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$



where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$




Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$



Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$



So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$



So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$



$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$



So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$



could some help me how to solve further, i don,t get any clue



thanks



answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$










share|cite|improve this question






















  • Didn’t you loose a negative sign in the equation for I?
    – Makina
    Nov 17 at 15:52















up vote
1
down vote

favorite













Solve the differential equation



$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$



where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$




Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$



Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$



So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$



So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$



$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$



So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$



could some help me how to solve further, i don,t get any clue



thanks



answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$










share|cite|improve this question






















  • Didn’t you loose a negative sign in the equation for I?
    – Makina
    Nov 17 at 15:52













up vote
1
down vote

favorite









up vote
1
down vote

favorite












Solve the differential equation



$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$



where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$




Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$



Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$



So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$



So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$



$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$



So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$



could some help me how to solve further, i don,t get any clue



thanks



answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$










share|cite|improve this question














Solve the differential equation



$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$



where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$




Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$



Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$



So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$



So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$



$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$



So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$



could some help me how to solve further, i don,t get any clue



thanks



answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$







differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 17 at 14:10









Durgesh Tiwari

5,2312630




5,2312630












  • Didn’t you loose a negative sign in the equation for I?
    – Makina
    Nov 17 at 15:52


















  • Didn’t you loose a negative sign in the equation for I?
    – Makina
    Nov 17 at 15:52
















Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52




Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral



You made a sign error



$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$



Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$



You also have



$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$



Separating leads to the integral



$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$



where $u = tantheta$. Completing the square on the denominator gives



$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002396%2fsolution-of-complex-differential-equation-involving-2-variables%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral



    You made a sign error



    $$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$



    Then
    $$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$



    You also have



    $$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
    = begin{cases}
    1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
    1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
    end{cases} $$



    Separating leads to the integral



    $$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$



    where $u = tantheta$. Completing the square on the denominator gives



    $$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral



      You made a sign error



      $$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$



      Then
      $$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$



      You also have



      $$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
      = begin{cases}
      1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
      1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
      end{cases} $$



      Separating leads to the integral



      $$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$



      where $u = tantheta$. Completing the square on the denominator gives



      $$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral



        You made a sign error



        $$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$



        Then
        $$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$



        You also have



        $$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
        = begin{cases}
        1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
        1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
        end{cases} $$



        Separating leads to the integral



        $$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$



        where $u = tantheta$. Completing the square on the denominator gives



        $$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$






        share|cite|improve this answer














        I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral



        You made a sign error



        $$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$



        Then
        $$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$



        You also have



        $$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
        = begin{cases}
        1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
        1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
        end{cases} $$



        Separating leads to the integral



        $$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$



        where $u = tantheta$. Completing the square on the denominator gives



        $$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 21 at 9:29

























        answered Nov 20 at 16:08









        Dylan

        11.8k31026




        11.8k31026






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002396%2fsolution-of-complex-differential-equation-involving-2-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?