Find complete integral of $(y-x)(qy-px) = (p-q)^{2}$











up vote
5
down vote

favorite
3













Find complete integral for partial differential equation $(y-x)(qy-px) = (p-q)^{2}$ where $p={ partial z over partial x},q={ partial z over partial y}$.




My attempt:



The given equation is f(x,y,z,p,q) = $(y-x)(qy-px) - (p-q)^{2}$
The Charpit's auxilary equation will be given by



$${dp over 2px-(p+q)y}={dq over 2qy-(p+q)x}={dx over {2(p-q)-x2+xy}}={dy over {-2(p-q)+xy-y2}}$$
From here I tried to proceed but no solvable fraction turned out.










share|cite|improve this question




















  • 2




    Differential equations are usually somehow related to derivatives, they say.
    – Ivan Neretin
    Nov 7 '15 at 15:16






  • 1




    sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
    – user2392963
    Nov 7 '15 at 15:24










  • Now it makes a whole lot more sense, thank you.
    – Ivan Neretin
    Nov 7 '15 at 15:28















up vote
5
down vote

favorite
3













Find complete integral for partial differential equation $(y-x)(qy-px) = (p-q)^{2}$ where $p={ partial z over partial x},q={ partial z over partial y}$.




My attempt:



The given equation is f(x,y,z,p,q) = $(y-x)(qy-px) - (p-q)^{2}$
The Charpit's auxilary equation will be given by



$${dp over 2px-(p+q)y}={dq over 2qy-(p+q)x}={dx over {2(p-q)-x2+xy}}={dy over {-2(p-q)+xy-y2}}$$
From here I tried to proceed but no solvable fraction turned out.










share|cite|improve this question




















  • 2




    Differential equations are usually somehow related to derivatives, they say.
    – Ivan Neretin
    Nov 7 '15 at 15:16






  • 1




    sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
    – user2392963
    Nov 7 '15 at 15:24










  • Now it makes a whole lot more sense, thank you.
    – Ivan Neretin
    Nov 7 '15 at 15:28













up vote
5
down vote

favorite
3









up vote
5
down vote

favorite
3






3






Find complete integral for partial differential equation $(y-x)(qy-px) = (p-q)^{2}$ where $p={ partial z over partial x},q={ partial z over partial y}$.




My attempt:



The given equation is f(x,y,z,p,q) = $(y-x)(qy-px) - (p-q)^{2}$
The Charpit's auxilary equation will be given by



$${dp over 2px-(p+q)y}={dq over 2qy-(p+q)x}={dx over {2(p-q)-x2+xy}}={dy over {-2(p-q)+xy-y2}}$$
From here I tried to proceed but no solvable fraction turned out.










share|cite|improve this question
















Find complete integral for partial differential equation $(y-x)(qy-px) = (p-q)^{2}$ where $p={ partial z over partial x},q={ partial z over partial y}$.




My attempt:



The given equation is f(x,y,z,p,q) = $(y-x)(qy-px) - (p-q)^{2}$
The Charpit's auxilary equation will be given by



$${dp over 2px-(p+q)y}={dq over 2qy-(p+q)x}={dx over {2(p-q)-x2+xy}}={dy over {-2(p-q)+xy-y2}}$$
From here I tried to proceed but no solvable fraction turned out.







differential-equations pde characteristics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 7 '15 at 20:54







user147263

















asked Nov 7 '15 at 15:01









user2392963

364




364








  • 2




    Differential equations are usually somehow related to derivatives, they say.
    – Ivan Neretin
    Nov 7 '15 at 15:16






  • 1




    sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
    – user2392963
    Nov 7 '15 at 15:24










  • Now it makes a whole lot more sense, thank you.
    – Ivan Neretin
    Nov 7 '15 at 15:28














  • 2




    Differential equations are usually somehow related to derivatives, they say.
    – Ivan Neretin
    Nov 7 '15 at 15:16






  • 1




    sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
    – user2392963
    Nov 7 '15 at 15:24










  • Now it makes a whole lot more sense, thank you.
    – Ivan Neretin
    Nov 7 '15 at 15:28








2




2




Differential equations are usually somehow related to derivatives, they say.
– Ivan Neretin
Nov 7 '15 at 15:16




Differential equations are usually somehow related to derivatives, they say.
– Ivan Neretin
Nov 7 '15 at 15:16




1




1




sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
– user2392963
Nov 7 '15 at 15:24




sorry , i forgot to mention, here $p={ partial z over partial x},q={ partial z over partial y}$.
– user2392963
Nov 7 '15 at 15:24












Now it makes a whole lot more sense, thank you.
– Ivan Neretin
Nov 7 '15 at 15:28




Now it makes a whole lot more sense, thank you.
– Ivan Neretin
Nov 7 '15 at 15:28










2 Answers
2






active

oldest

votes

















up vote
1
down vote













Hint:



Let $begin{cases}u=x+y\v=x-yend{cases}$ ,



Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial u}dfrac{partial u}{partial x}+dfrac{partial z}{partial v}dfrac{partial v}{partial x}=dfrac{partial z}{partial u}+dfrac{partial z}{partial v}$



$dfrac{partial z}{partial y}=dfrac{partial z}{partial u}dfrac{partial u}{partial y}+dfrac{partial z}{partial v}dfrac{partial v}{partial y}=dfrac{partial z}{partial u}-dfrac{partial z}{partial v}$



$therefore vleft(vdfrac{partial z}{partial u}+udfrac{partial z}{partial v}right)=4left(dfrac{partial z}{partial v}right)^2$






share|cite|improve this answer





















  • Sir can you please elaborate a more.i am unable to solve the simplified pde
    – user471651
    Nov 18 at 7:52


















up vote
1
down vote



+50










Take $X$ and $Y$ to be new variables such that



$$X=x+ytag1$$$$Y=xytag2$$



Given that $(y-x)(qy-px)=(p-q)^2$



Now, $$p=dfrac{partial z}{partial x}=dfrac{partial z}{partial X}dfrac{partial X}{partial x}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial x}=dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}tag3$$and
$$q=dfrac{partial z}{partial y}=dfrac{partial z}{partial X}dfrac{partial X}{partial y}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial y}=dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}tag4$$



Now plug in $p$ and $q$ in $(2)$ and we get
$$(y-x)left[yleft(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)-xleft(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)right]=left[left(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)-left(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)right]^2$$or
$$implies(y-x)^2dfrac{partial z}{partial X}=(y-x)^2left(dfrac{partial z}{partial Y}right)$$
$$implies dfrac{partial z}{partial X}=left(dfrac{partial z}{partial Y}right)^2mbox{ or } p=q^2tag5$$
where $p=dfrac{partial z}{partial X}$ and $q=dfrac{partial z}{partial Y}$



$(4)$ is of the form $f(p,q)=0$



So, $$z=aX+bY+ctag6$$



where $a=b^2$, on putting $a$ for $p$ and $b$ for $q$ in $(5)$



Therefore, from $(6)$, the required complete integral is $$z=b^2X+bY+c$$or$$z=b^2(x+y)+bxy+c mbox{ from }(6)$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1517446%2ffind-complete-integral-of-y-xqy-px-p-q2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Hint:



    Let $begin{cases}u=x+y\v=x-yend{cases}$ ,



    Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial u}dfrac{partial u}{partial x}+dfrac{partial z}{partial v}dfrac{partial v}{partial x}=dfrac{partial z}{partial u}+dfrac{partial z}{partial v}$



    $dfrac{partial z}{partial y}=dfrac{partial z}{partial u}dfrac{partial u}{partial y}+dfrac{partial z}{partial v}dfrac{partial v}{partial y}=dfrac{partial z}{partial u}-dfrac{partial z}{partial v}$



    $therefore vleft(vdfrac{partial z}{partial u}+udfrac{partial z}{partial v}right)=4left(dfrac{partial z}{partial v}right)^2$






    share|cite|improve this answer





















    • Sir can you please elaborate a more.i am unable to solve the simplified pde
      – user471651
      Nov 18 at 7:52















    up vote
    1
    down vote













    Hint:



    Let $begin{cases}u=x+y\v=x-yend{cases}$ ,



    Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial u}dfrac{partial u}{partial x}+dfrac{partial z}{partial v}dfrac{partial v}{partial x}=dfrac{partial z}{partial u}+dfrac{partial z}{partial v}$



    $dfrac{partial z}{partial y}=dfrac{partial z}{partial u}dfrac{partial u}{partial y}+dfrac{partial z}{partial v}dfrac{partial v}{partial y}=dfrac{partial z}{partial u}-dfrac{partial z}{partial v}$



    $therefore vleft(vdfrac{partial z}{partial u}+udfrac{partial z}{partial v}right)=4left(dfrac{partial z}{partial v}right)^2$






    share|cite|improve this answer





















    • Sir can you please elaborate a more.i am unable to solve the simplified pde
      – user471651
      Nov 18 at 7:52













    up vote
    1
    down vote










    up vote
    1
    down vote









    Hint:



    Let $begin{cases}u=x+y\v=x-yend{cases}$ ,



    Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial u}dfrac{partial u}{partial x}+dfrac{partial z}{partial v}dfrac{partial v}{partial x}=dfrac{partial z}{partial u}+dfrac{partial z}{partial v}$



    $dfrac{partial z}{partial y}=dfrac{partial z}{partial u}dfrac{partial u}{partial y}+dfrac{partial z}{partial v}dfrac{partial v}{partial y}=dfrac{partial z}{partial u}-dfrac{partial z}{partial v}$



    $therefore vleft(vdfrac{partial z}{partial u}+udfrac{partial z}{partial v}right)=4left(dfrac{partial z}{partial v}right)^2$






    share|cite|improve this answer












    Hint:



    Let $begin{cases}u=x+y\v=x-yend{cases}$ ,



    Then $dfrac{partial z}{partial x}=dfrac{partial z}{partial u}dfrac{partial u}{partial x}+dfrac{partial z}{partial v}dfrac{partial v}{partial x}=dfrac{partial z}{partial u}+dfrac{partial z}{partial v}$



    $dfrac{partial z}{partial y}=dfrac{partial z}{partial u}dfrac{partial u}{partial y}+dfrac{partial z}{partial v}dfrac{partial v}{partial y}=dfrac{partial z}{partial u}-dfrac{partial z}{partial v}$



    $therefore vleft(vdfrac{partial z}{partial u}+udfrac{partial z}{partial v}right)=4left(dfrac{partial z}{partial v}right)^2$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 6 '15 at 18:19









    doraemonpaul

    12.4k31660




    12.4k31660












    • Sir can you please elaborate a more.i am unable to solve the simplified pde
      – user471651
      Nov 18 at 7:52


















    • Sir can you please elaborate a more.i am unable to solve the simplified pde
      – user471651
      Nov 18 at 7:52
















    Sir can you please elaborate a more.i am unable to solve the simplified pde
    – user471651
    Nov 18 at 7:52




    Sir can you please elaborate a more.i am unable to solve the simplified pde
    – user471651
    Nov 18 at 7:52










    up vote
    1
    down vote



    +50










    Take $X$ and $Y$ to be new variables such that



    $$X=x+ytag1$$$$Y=xytag2$$



    Given that $(y-x)(qy-px)=(p-q)^2$



    Now, $$p=dfrac{partial z}{partial x}=dfrac{partial z}{partial X}dfrac{partial X}{partial x}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial x}=dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}tag3$$and
    $$q=dfrac{partial z}{partial y}=dfrac{partial z}{partial X}dfrac{partial X}{partial y}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial y}=dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}tag4$$



    Now plug in $p$ and $q$ in $(2)$ and we get
    $$(y-x)left[yleft(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)-xleft(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)right]=left[left(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)-left(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)right]^2$$or
    $$implies(y-x)^2dfrac{partial z}{partial X}=(y-x)^2left(dfrac{partial z}{partial Y}right)$$
    $$implies dfrac{partial z}{partial X}=left(dfrac{partial z}{partial Y}right)^2mbox{ or } p=q^2tag5$$
    where $p=dfrac{partial z}{partial X}$ and $q=dfrac{partial z}{partial Y}$



    $(4)$ is of the form $f(p,q)=0$



    So, $$z=aX+bY+ctag6$$



    where $a=b^2$, on putting $a$ for $p$ and $b$ for $q$ in $(5)$



    Therefore, from $(6)$, the required complete integral is $$z=b^2X+bY+c$$or$$z=b^2(x+y)+bxy+c mbox{ from }(6)$$






    share|cite|improve this answer

























      up vote
      1
      down vote



      +50










      Take $X$ and $Y$ to be new variables such that



      $$X=x+ytag1$$$$Y=xytag2$$



      Given that $(y-x)(qy-px)=(p-q)^2$



      Now, $$p=dfrac{partial z}{partial x}=dfrac{partial z}{partial X}dfrac{partial X}{partial x}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial x}=dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}tag3$$and
      $$q=dfrac{partial z}{partial y}=dfrac{partial z}{partial X}dfrac{partial X}{partial y}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial y}=dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}tag4$$



      Now plug in $p$ and $q$ in $(2)$ and we get
      $$(y-x)left[yleft(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)-xleft(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)right]=left[left(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)-left(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)right]^2$$or
      $$implies(y-x)^2dfrac{partial z}{partial X}=(y-x)^2left(dfrac{partial z}{partial Y}right)$$
      $$implies dfrac{partial z}{partial X}=left(dfrac{partial z}{partial Y}right)^2mbox{ or } p=q^2tag5$$
      where $p=dfrac{partial z}{partial X}$ and $q=dfrac{partial z}{partial Y}$



      $(4)$ is of the form $f(p,q)=0$



      So, $$z=aX+bY+ctag6$$



      where $a=b^2$, on putting $a$ for $p$ and $b$ for $q$ in $(5)$



      Therefore, from $(6)$, the required complete integral is $$z=b^2X+bY+c$$or$$z=b^2(x+y)+bxy+c mbox{ from }(6)$$






      share|cite|improve this answer























        up vote
        1
        down vote



        +50







        up vote
        1
        down vote



        +50




        +50




        Take $X$ and $Y$ to be new variables such that



        $$X=x+ytag1$$$$Y=xytag2$$



        Given that $(y-x)(qy-px)=(p-q)^2$



        Now, $$p=dfrac{partial z}{partial x}=dfrac{partial z}{partial X}dfrac{partial X}{partial x}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial x}=dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}tag3$$and
        $$q=dfrac{partial z}{partial y}=dfrac{partial z}{partial X}dfrac{partial X}{partial y}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial y}=dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}tag4$$



        Now plug in $p$ and $q$ in $(2)$ and we get
        $$(y-x)left[yleft(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)-xleft(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)right]=left[left(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)-left(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)right]^2$$or
        $$implies(y-x)^2dfrac{partial z}{partial X}=(y-x)^2left(dfrac{partial z}{partial Y}right)$$
        $$implies dfrac{partial z}{partial X}=left(dfrac{partial z}{partial Y}right)^2mbox{ or } p=q^2tag5$$
        where $p=dfrac{partial z}{partial X}$ and $q=dfrac{partial z}{partial Y}$



        $(4)$ is of the form $f(p,q)=0$



        So, $$z=aX+bY+ctag6$$



        where $a=b^2$, on putting $a$ for $p$ and $b$ for $q$ in $(5)$



        Therefore, from $(6)$, the required complete integral is $$z=b^2X+bY+c$$or$$z=b^2(x+y)+bxy+c mbox{ from }(6)$$






        share|cite|improve this answer












        Take $X$ and $Y$ to be new variables such that



        $$X=x+ytag1$$$$Y=xytag2$$



        Given that $(y-x)(qy-px)=(p-q)^2$



        Now, $$p=dfrac{partial z}{partial x}=dfrac{partial z}{partial X}dfrac{partial X}{partial x}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial x}=dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}tag3$$and
        $$q=dfrac{partial z}{partial y}=dfrac{partial z}{partial X}dfrac{partial X}{partial y}+dfrac{partial z}{partial Y}dfrac{partial Y}{partial y}=dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}tag4$$



        Now plug in $p$ and $q$ in $(2)$ and we get
        $$(y-x)left[yleft(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)-xleft(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)right]=left[left(dfrac{partial z}{partial X}+ydfrac{partial z}{partial Y}right)-left(dfrac{partial z}{partial X}+xdfrac{partial z}{partial Y}right)right]^2$$or
        $$implies(y-x)^2dfrac{partial z}{partial X}=(y-x)^2left(dfrac{partial z}{partial Y}right)$$
        $$implies dfrac{partial z}{partial X}=left(dfrac{partial z}{partial Y}right)^2mbox{ or } p=q^2tag5$$
        where $p=dfrac{partial z}{partial X}$ and $q=dfrac{partial z}{partial Y}$



        $(4)$ is of the form $f(p,q)=0$



        So, $$z=aX+bY+ctag6$$



        where $a=b^2$, on putting $a$ for $p$ and $b$ for $q$ in $(5)$



        Therefore, from $(6)$, the required complete integral is $$z=b^2X+bY+c$$or$$z=b^2(x+y)+bxy+c mbox{ from }(6)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 26 at 2:38









        Key Flex

        7,29941231




        7,29941231






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1517446%2ffind-complete-integral-of-y-xqy-px-p-q2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?